Skip to main content
Log in

Numerical scheme to solve a class of variable—order Hilfer—Prabhakar fractional differential equations with Jacobi wavelets polynomials

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

In this paper, we introduced a numerical approach for solving the fractional differential equations with a type of variable-order Hilfer-Prabhakar derivative of order μ(t) and ν(t). The proposed method is based on the Jacobi wavelet collocation method. According to this method, an operational matrix is constructed. We use this operational matrix of the fractional derivative of variable-order to reduce the solution of the linear fractional equations to the system of algebraic equations. Theoretical considerations are discussed. Finally, some numerical examples are presented to demonstrate the accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M H Akrami, M H Atabakzadeh, G H Erjaee. The operational matrix of fractional integration for shifted Legendre polynomials, Iran J Sci Technol, 2013, 37(A4): 439–444.

    MathSciNet  Google Scholar 

  2. H Adibi, P Assari. Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind, Math Probl Eng, 2010.

  3. M F Araghi, S Daliri, M Bahmanpour. Numerical solution of integro-differential equation by using Chebyshev wavelet operational matrix of integration, Int J Math Modell Comput, 2012, 2(2): 127–136.

    Google Scholar 

  4. H Aminikhah, A R Sheikhani, H Rezazadeh. Exact solutions for the fractional differential equations by using the first integral method, Nonl Eng, 2015, 4(1): 15–22.

    MATH  Google Scholar 

  5. H Aminikhah, A H Refahi Sheikhani, H Rezazadeh. Exact solutions of some nonlinear-systems of partial differential equations by using the functional variable method, Math, 2014, 56(2): 103–116.

    MathSciNet  MATH  Google Scholar 

  6. A Ansari, A R Sheikhani. New identities for the Wright and the Mittag-Leffler functions using the Laplace transform, Asian Eur J Math, 2014, 7(3): 1450038.

    Article  MathSciNet  Google Scholar 

  7. E Babolian, F Fattahzadeh. Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration, Appl Math Comput, 2007, 188(1): 1016–1022.

    MathSciNet  MATH  Google Scholar 

  8. A H Bhrawy, M A Zaky. Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations, Nonl Dyn, 2017, 89(2): 1415–1432.

    Article  Google Scholar 

  9. Y Chen, M Yi, C Yu. Error analysis for numerical solution of fractional differential equation by Haar wavelets method, J Comput Sci, 2012, 3(5): 367–373.

    Article  Google Scholar 

  10. T Elnaqeeb, N A Shah, I A Mirza. Natural convection flows of carbon nanotubes nanofluids with Prabhakar-like thermal transport, Math Meth Appl Sci, 2020.

  11. S Eshaghi, R K Ghaziani, A Ansari. Stability and dynamics of neutral and integro-differential regularized Prabhakar fractional differential systems, Comput Appl Math, 2020, 39(4): 1–21.

    Article  MathSciNet  Google Scholar 

  12. S Eshaghi, R K Ghaziani, A Ansari. Stability and chaos control of regularized Prabhakar fractional dynamical systems without and with delay, Math Meth Appl Sci, 2019, 42(7): 2302–2323.

    Article  MathSciNet  Google Scholar 

  13. I L El-Kalla. Convergence of the Adomian method applied to a class of nonlinear integral equations, Appl Math Lett, 2008, 21(4): 372–376.

    Article  MathSciNet  Google Scholar 

  14. R Garra, R Gorenflo, F Polito, Ž Tomovski. Hilfer-Prabhakar derivatives and some applications, Appl math comput, 2014, 242: 576–589.

    MathSciNet  MATH  Google Scholar 

  15. M H Heydari. Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana-Baleanu-Caputo variable-order fractional derivative, Chaos Solitons Fract, 2020, 130: 109401.

    Article  MathSciNet  Google Scholar 

  16. M M Hosseini. Adomian decomposition method for solution of nonlinear differential algebraic equations, Appl math comput, 2006, 181(2): 1737–1744.

    MathSciNet  MATH  Google Scholar 

  17. A A A Kilbas, H M Srivastava, J J Trujillo. Theory and applications of fractional differential equations, Elsevier Science Limited, 2006.

  18. M T Kajani, A H Vencheh, M Ghasemi. The Chebyshev wavelets operational matrix of integration and product operation matrix, Inter J Comput Math, 2006, 86(7): 1118–1125.

    Article  MathSciNet  Google Scholar 

  19. S Khubalkar, A Junghare, M Aware, S Das. Unique fractional calculus engineering laboratory for learning and research, Inte J Elect Eng Edu, 2018, https://doi.org/10.1177/0020720918799509.

  20. S Mashayekhi, Y Ordokhani, M Razzaghi. A hybrid functions approach for the Duffing equation, Physica Scripta, 2013, 88(2): 025002.

    Article  Google Scholar 

  21. A Mahmoud, I G Ameen, A A A Mohamed. new operational matrix based on Jacobi wavelets for a class of variable-order fractional differential equation, Proc Rom Academy, 2017, 18(4): 315–322.

    MathSciNet  Google Scholar 

  22. S Momani, Z Odibat, V S Erturk. Generalized differential transform method for solving a space and time fractional diffusion wave equation, Phys Lett, 2007, 370(5–6): 379–387.

    Article  MathSciNet  Google Scholar 

  23. A Mohebbi, M Saffarian. Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation, J Appl Comput Mech, 2020, 6(2): 235–247.

    Google Scholar 

  24. S Nemati, P M Lima, S Sedaghat. Legendre wavelet collocation method combined with the Gauss-Jacobi quadrature for solving fractional delay-type integro-differential equations, Appl Numer Math, 2020, 149: 99–112.

    Article  MathSciNet  Google Scholar 

  25. H S Najafi, S A Edalatpanah, A H Refahisheikhani. An analytical method as a preconditioning modeling for systems of linear equations, Comput Appl Math, 2018, 37(2): 922–931.

    Article  MathSciNet  Google Scholar 

  26. Z M Odibat. A study on the convergence of variational iteration method, Math Comput Modell, 2010, 51(9–10): 1181–1192.

    Article  MathSciNet  Google Scholar 

  27. I Podlubny. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999.

    MATH  Google Scholar 

  28. M D Ortigueira. Fractional calculus for scientists and engineers, Springer Science and Business Media, 2011.

  29. T R Prabhakar. A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math J, 1971, 19: 7–15.

    MathSciNet  MATH  Google Scholar 

  30. L J Rong, P Chang. Jacobi wavelet operational matrix of fractional integration for solving fractional integro-differential equation, In J Phys Conf Ser, 2016, 693: 012002.

    Article  Google Scholar 

  31. H M Srivastava, R K Saxena, T K Pogany, R Saxena. Integral transforms and special functions, Appl Math Comput, 2011, 22(7): 487–506.

    MATH  Google Scholar 

  32. F Shariffar, A Hrefahi Sheikhani, H S Najafi. An efficient chebyshev semi-iterative method for the solution of large systems, Appl Math Phys, 2018, 80(4): 239–252.

    MathSciNet  MATH  Google Scholar 

  33. K Sun, M Zhu. Numerical algorithm to solve a class of variable order fractional integraldifferential equation based on Chebyshev polynomials, Math Prob Eng, 2015.

  34. A Secer, M Cinar. A Jacobi wavelet collocation method for fractional fisher’s equation in time, Thermal Sci, 2020, 24: 119–129.

    Article  Google Scholar 

  35. N H Tuan, S Nemati, R M Ganji, H Jafari. Numerical solution of multi-variable order fractional integro-differential equations using the Bernstein polynomials, Eng Comput, 2020.

  36. Y Xu, V Ertürk. A finite difference technique for solving variable order fractional integro-differential equations, Bull Iranian Math Soci, 2014, 40(3): 699–712.

    MathSciNet  MATH  Google Scholar 

  37. M Zayernouri, G E Karniadakis. Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J Comput Phys, 2015, 293: 312–338.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Refahi Sheikhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavasani, B.B., Sheikhani, A.H.R. & Aminikhah, H. Numerical scheme to solve a class of variable—order Hilfer—Prabhakar fractional differential equations with Jacobi wavelets polynomials. Appl. Math. J. Chin. Univ. 37, 35–51 (2022). https://doi.org/10.1007/s11766-022-4241-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-022-4241-z

MR Subject Classification

Keywords

Navigation