Skip to main content

Advertisement

Log in

FISH-CC: novel face identification using spider hierarchy (FISH) with a classic classifier

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Face is one of the most important biometric traits utilized by humans for recognition. Face recognition is the prominent biometric method for human authentication, and it is used in several domains due to its unique features, non-intrusive, and convenience compared to other biometric systems like fingerprint or palmprint scans. Although the field of face recognition has advanced significantly, there are still problems that prevent accuracy from surpassing that of humans. This study proposes a novel and effective framework, named Face Identification utilizing Spider Hierarchy with a Classic Classifier (FISH-CC), aimed at recognizing a person’s face, gender, and age. This framework incorporates a novel face boundary localization scheme based on cooperative game theory (CGT), enhancing facial detection performance by accurately detecting facial contour. Features are extracted from the detected faces using a modified local binary pattern (mLBP). To optimize feature selection, a CGT-based algorithm, known as the extended contribution selection algorithm (ECSA) with forward feature selection (FFS), is implemented. Finally, Spider Hierarchy (SH) integrated with a Classic Classifier (CC) is used for face identification. To assess the effectiveness of the proposed method, a number of tests are carried out, and the labeled faces in the wild (LFW) database are utilized to validate the performance. The outcomes of this study demonstrated that the proposed FISH-CC achieves a superior accuracy rate of 99.60% when compared to the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The corresponding author may provide an image dataset and the code used to support the study's conclusions upon reasonable request.

References

  1. Rusia, M.K., Singh, D.K.: A comprehensive survey on techniques to handle face identity threats: challenges and opportunities. Multim. Tools Appl. 82(2), 1669–1748 (2022). https://doi.org/10.1007/s11042-022-13248-6

    Article  Google Scholar 

  2. Guo, G., Zhang, N.: A survey on deep learning based face recognition. Comput. Vis. Image Underst. 189, 102805 (2019). https://doi.org/10.1016/j.cviu.2019.102805

    Article  Google Scholar 

  3. Wang, M., Deng, W.: Deep face recognition: a survey. Neurocomputing 429, 215–244 (2021). https://doi.org/10.1016/j.neucom.2020.10.081

    Article  Google Scholar 

  4. Ding, Y., Tang, Z., Wang, F.: Single-sample face recognition based on shared generative adversarial network. Mathematics 10(5), 752 (2022). https://doi.org/10.3390/math10050752

    Article  Google Scholar 

  5. Eleyan, A.: Statistical local descriptors for face recognition: a comprehensive study. Multim. Tools Appl. 82(21), 32485–32504 (2023). https://doi.org/10.1007/s11042-023-14482-2

    Article  Google Scholar 

  6. Liu, F., Yang, S., Ding, Y., Xu, F.: Single sample face recognition via BoF using multistage KNN collaborative coding. Multim. Tools Appl. 78(10), 13297–13311 (2019). https://doi.org/10.1007/s11042-018-7002-5

    Article  Google Scholar 

  7. Xue, S., Ren, H.: Single sample per person face recognition algorithm based on the robust prototype dictionary and robust variation dictionary construction. IET Image Proc. 16(3), 742–754 (2021). https://doi.org/10.1049/ipr2.12381

    Article  Google Scholar 

  8. Mokhayeri, F., Granger, E.: A paired sparse representation model for robust face recognition from a single sample. Pattern Recogn. 100, 107129 (2020). https://doi.org/10.1016/j.patcog.2019.107129

    Article  Google Scholar 

  9. Tang, Y., Zhang, X., Hu, X., Wang, S., Wang, H.: Facial expression recognition using frequency neural network. IEEE Trans. Image Process. 30, 444–457 (2021). https://doi.org/10.1109/tip.2020.3037467

    Article  Google Scholar 

  10. Hu, C.-H., Yu, J., Wu, F., Zhang, Y., Jing, X.-Y., Lu, X.-B., & Liu, P.: Face illumination recovery for the deep learning feature under severe illumination variations. Pattern Recogn. 111, 107724 (2021). https://doi.org/10.1016/j.patcog.2020.107724.

  11. Liang, L.: Face recognition technology analysis based on deep learning algorithm. J. Phys: Conf. Ser. 1544(1), 012158 (2020). https://doi.org/10.1088/1742-6596/1544/1/012158

    Article  Google Scholar 

  12. Maghari, A.Y.A.: Recognition of partially occluded faces using regularized ICA. Inverse Prob. Sci. Eng. 29(8), 1158–1177 (2020). https://doi.org/10.1080/17415977.2020.1845329

    Article  MathSciNet  Google Scholar 

  13. Chen, S., Liu, J., Zhou, Z.-H.: Making FLDA applicable to face recognition with one sample per person. Pattern Recogn. 37(7), 1553–1555 (2004). https://doi.org/10.1016/j.patcog.2003.12.010

    Article  Google Scholar 

  14. Zhang, J., Zhang, H., Bo, L., Li, H., Xu, S., Yuan, D.: Subspace transform induced robust similarity measure for facial images. Front. Inform. Technol. Electron. Eng. 21(9), 1334–1345 (2020). https://doi.org/10.1631/fitee.1900552

    Article  Google Scholar 

  15. Li, F., Yuan, T., Zhang, Y., Liu, W.: Face recognition in single sample per person fusing multi-scale features extraction and virtual sample generation methods. Front. Appl. Math. Stat. 8 (2022). https://doi.org/10.3389/fams.2022.869830.

  16. Gu, J., Hu, H., Li, H.: Local robust sparse representation for face recognition with single sample per person. IEEE/CAA J. Automat. Sinica, 5(2), 547–554 (2018). https://doi.org/10.1109/jas.2017.7510658

  17. Liu, F., Chen, D., Wang, F., Li, Z., Xu, F.: Deep learning based single sample face recognition: a survey. Artif. Intell. Rev. 56(3), 2723–2748 (2022). https://doi.org/10.1007/s10462-022-10240-2

    Article  Google Scholar 

  18. Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S. Z.: Learning multi-scale block local binary patterns for face recognition. Adv. Biomet. pp. 828–837 (2007). https://doi.org/10.1007/978-3-540-74549-5_87

  19. Baochang, Z., Yongsheng, G., Sanqiang, Z., Jianzhuang, L.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010). https://doi.org/10.1109/tip.2009.2035882

    Article  MathSciNet  Google Scholar 

  20. Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Subspace learning from image gradient orientations. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2454–2466 (2012). https://doi.org/10.1109/tpami.2012.40.

  21. Tamilselvi, M., Karthikeyan, S.: An ingenious face recognition system based on HRPSM_CNN under unrestrained environmental condition. Alex. Eng. J. 61(6), 4307–4321 (2022). https://doi.org/10.1016/j.aej.2021.09.043

    Article  Google Scholar 

  22. Shetty, A.B., Bhoomika, D., Rebeiro, J., Ramyashree.: Facial recognition using Haar cascade and LBP classifiers. Global Transit. Proc. 2(2), 330–335 (2021). https://doi.org/10.1016/j.gltp.2021.08.044

    Article  Google Scholar 

  23. Bah, S.M., Ming, F.: An improved face recognition algorithm and its application in attendance management system. Array 5, 100014 (2020). https://doi.org/10.1016/j.array.2019.100014

    Article  Google Scholar 

  24. Deeba, F., Memon, H., Ali, F., Ahmed, A., Ghaffar, A.: LBPH-based enhanced real-time face recognition. Int. J. Adv. Comp. Sci. Appl. 10(5) (2019). https://doi.org/10.14569/ijacsa.2019.0100535.

  25. Dutta, N.M.: Improving the recognition of faces using LBP and SVM optimized by PSO technique. Int. J. Exp. Diabetes Res. 5(4), 297–303 (2017)

    Google Scholar 

  26. Saleem, S., Shiney, J., Priestly Shan, B., Kumar Mishra, V.: Face recognition using facial features. Mater. Today: Proc. 80, 3857–3862 (2023). https://doi.org/10.1016/j.matpr.2021.07.402

    Article  Google Scholar 

  27. Shanthi, K.G., Sesha Vidhya, S., Vishakha, K., Subiksha, S., Srija, K.K., Srinee Mamtha, R.: Algorithms for face recognition drones. Mater. Today: Proc. 80, 2224–2227 (2023). https://doi.org/10.1016/j.matpr.2021.06.186

    Article  Google Scholar 

  28. Teoh, K., Ismail, R., Naziri, S., Hussin, R., Isa, M., Basir, M.: Face recognition and identification using deep learning approach. J. Phys: Conf. Ser. 1755(1), 012006 (2021). https://doi.org/10.1088/1742-6596/1755/1/012006

    Article  Google Scholar 

  29. Mamieva, D., Abdusalomov, A.B., Mukhiddinov, M., Whangbo, T.K.: Improved face detection method via learning small faces on hard images based on a deep learning approach. Sensors 23(1), 502 (2023). https://doi.org/10.3390/s23010502

    Article  Google Scholar 

  30. Ahmad, F., Roy, K., O‟Connor, B., Shelton, J., Arias, P., Esterline, A., & Dozier, G.: Facial recognition utilizing patch based game theory. Int. J. Mach. Learn. Comput. 5(4), 334–338 (2015). https://doi.org/10.7763/ijmlc.2015.v5.530

    Article  Google Scholar 

  31. Muthalagu, R., Jireesha, R.: Image segmentation using novel social spider algorithm for global optimization. Int. Res. J. Eng. Technol. 3, 347–353 (2016)

    Google Scholar 

  32. Huang, G.B., Mattar, M., Berg, T.L., Learned-Miller, E.G.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. University of Massachusetts: Amherst, MA, USA (2007).

  33. Lu, C., Tang, X.: Surpassing human-level face verification performance on LFW with GaussianFace (Version 3) (2014). https://doi.org/10.48550/ARXIV.1404.3840.

  34. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    Google Scholar 

  35. Freund, Y., Robert, S., Naoki, A.: A short introduction to boosting. J.-Japan. Soc. Artif. Intell. 14, 771–780 (1999)

    Google Scholar 

  36. Hussain, S. U., Napoléon, T., & Jurie, F.: Face recognition using local quantized patterns. In: Proceedings of the British Machine Vision Conference 2012. British Machine Vision Conference 2012. British Machine Vision Association (2012). https://doi.org/10.5244/c.26.99.

  37. Chang, C.-C., Lin, C.-J.: LIBSVM. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011). https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  38. Santoso, K., Kusuma, G.P.: Face recognition using modified openface. Proc. Comp. Sci. 135, 510–517 (2018). https://doi.org/10.1016/j.procs.2018.08.203

    Article  Google Scholar 

  39. Patil, R., Shubhada, P., Shruti, S., Shruti, S., Sheetal, M.: Secure online payment with facial recognition using CNN. Int. Res. J. Eng. Technol. 6(4), 604–607 (2019)

    Google Scholar 

  40. Chacua, B., Garcia, I., Rosero, P., Suarez, L., Ramirez, I., Simbana, Z., & Pusda, M.: People identification through facial recognition using deep learning. In: 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI). IEEE (2019). https://doi.org/10.1109/la-cci47412.2019.9037043.

  41. Aria, V.A., Ankit, R., Rohit, S.: Secure online payment with facial recognition using MTCNN. Int. J. Appl. Eng. Res. 15(3), 249–252 (2020)

    Google Scholar 

  42. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: 2015 IEEE International Conference on Computer Vision (ICCV). 2015 IEEE International Conference on Computer Vision. IEEE, New York (2015). https://doi.org/10.1109/iccv.2015.425.

  43. Karras, T., Laine, S., & Aila, T. (2018). A style-based generator architecture for generative adversarial networks (Version 3). https://doi.org/10.48550/ARXIV.1812.04948.

  44. https://www.kaggle.com/datasets/amar09/facial-expression-comparison-fec-google/code. Accessed: 23 August 2023.

Download references

Funding

The study was neither funded, nor was it carried out as a part of employment. The researchers conducted all of the research themselves.

Author information

Authors and Affiliations

Authors

Contributions

All the authors equally contributed to the research, experimentation, and manuscript writing. All the authors have read and approved the final copy of the manuscript.

Corresponding author

Correspondence to Bhuvaneshwari Ranganathan.

Ethics declarations

Conflict of Interests

Conflicts of interest are not disclosed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranganathan, B., Palanisamy, G. FISH-CC: novel face identification using spider hierarchy (FISH) with a classic classifier. SIViP 18, 3925–3941 (2024). https://doi.org/10.1007/s11760-024-03055-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-024-03055-x

Keywords

Navigation