Skip to main content
Log in

Non-convex variational model for image restoration under impulse noise

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel non-convex regularization model for recovering the degraded images corrupted by impulse noise. The introduced model closely incorporates the advantages of total generalized variation and non-convex prior. This combination helps to eliminate the remaining staircase artifacts while preserving sharp edges and then results in the highly desirable restorations. To optimize the resulting minimizations, we develop in great detail two efficient numerical algorithms called primal–dual method and alternating minimization method. Several visual experiments and measurable comparisons, which indicate the visualization quality and restoration accuracy, are presented to demonstrate the outstanding performance of our new methods for image restoration under impulse noise over some well-developed numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nikolova, M.: Minimizeers of cost-functions involving non-smooth data fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Duval, V., Aujol, J.-F., Gousseau, Y.: The TVL1 model: a geometric point of view. Multiscale Model. Simul. 8(1), 154–189 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Yin, W., Goldfarb, D., Osher, S.: The total variation regularized \(L^1\) model for multiscale decomposition. Multiscale Model. Simul. 6(1), 190–211 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Dong, Y., Hintermüller, M., Neri, M.: An efficient primal-dual method for \(L^1\)TV image restoration. SIAM J. Imaging Sci. 2(4), 1168–1189 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Cai, J.-F., Chan, R.H., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging Vis. 36(1), 46–53 (2010)

    MathSciNet  Google Scholar 

  8. Chan, R., Ho, C.W., Nikolova, M.: Salt-and-pepper noise removel by median-type noise detector and detail-preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)

    Google Scholar 

  9. Guo, X., Li, F., Ng, M.K.: A fast \(\ell \)1-TV algorithm for image restoration. SIAM J. Sci. Comput. 31(1), 2322–2341 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31(4), 2842–2865 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Liu, X.: Alternating minimization method for image restoration corrupted by impulse noise. Multimed. Tools Appl. 76(10), 12505–12516 (2017)

    Google Scholar 

  12. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    MATH  Google Scholar 

  14. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Liu, X., Chen, Y.: NLTV-Gabor-based models for image decomposition and denoising. Signal Image Video Process. 14(2), 305–313 (2020)

    Google Scholar 

  16. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)

    Google Scholar 

  18. Xu, J., Feng, X., Hao, Y., Han, Y.: Image decomposition using adaptive second-order total generalized variation. Signal Image Video Process. 8(1), 39–47 (2014)

    Google Scholar 

  19. Nikolova, M., Ng, M.K., Tam, C.-P.: Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Trans. Image Process. 19(12), 3073–3088 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Bauss, F., Nikolova, M., Steidl, G.: Fully smoothed \(\ell \)1-TV models: bounds for the minimizers and parameter choice. J. Math. Imaging Vis. 48(2), 295–307 (2013)

    MathSciNet  Google Scholar 

  21. Nikolova, M., Ng, M.K., Tam, C.-P.: On \(\ell \)1 data fitting and concave regularization for image recovery. SIAM J. Sci. Comput. 35(1), A397–A430 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: An iterated \(\ell \)1 algorithm for non-smooth non-convex optimization in computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, pp. 1759–1766 (2013)

  23. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: On iteratively reweighted algorithms for nonsmooth nonconvex optimization. SIAM J. Imaging Sci. 8(1), 331–372 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, H., Tang, L., Fang, Z., Xiang, C., Li, C.: Nonconvex and nonsmooth total generalized variation model for image restoration. Signal Process. 143(1), 69–85 (2017)

    Google Scholar 

  25. Zhang, W., Jin, L., Song, E., Xu, X.: Removal of impulse noise in color images based on convolutional neural network. Appl. Soft Comput. 82, 105558 (2019)

    Google Scholar 

  26. Wang, F., Huang, H., Liu, J.: Variational-based mixed noise removal with CNN deep learning regularization. IEEE Trans. Image Process. 29, 1246–1258 (2020)

    MathSciNet  Google Scholar 

  27. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\ell \)1 minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal–dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Goldstein, T., Osher, S.: The split Bregman algorithm for L1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Cai, J.F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Setzer, S.: Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Cui, Z.-X., Fan, Q.: A “nonconvex+nonconvex’’ approach for image restoration with impulse noise removal. Appl. Math. Model. 62, 254–271 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Pratt, W.K.: Digital Image Processing, 3rd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  35. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwu Liu.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Scientific Research Fund of Hunan Provincial Education Department (19B215) and Hunan Provincial Natural Science Foundation of China (2020JJ4285)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X. Non-convex variational model for image restoration under impulse noise. SIViP 16, 1549–1557 (2022). https://doi.org/10.1007/s11760-021-02109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-02109-8

Keywords

Navigation