Skip to main content
Log in

Optimum FrFT domain cyclostationarity based adaptive beamforming

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Essentially, the observed signal of interest is buried under the clutter due to high backscatters in radar or sonar applications. The presence of colored-Gaussian stationary noise (clutter) degrades the traditional beamformers, significantly. A new adaptive beamforming technique is presented here based on the numerical selection of the fractional order. The new method maximizes the fractional domain spectral kurtosis and optimum fractional Fourier domain cyclostationarity of the non-stationary linear chirp signal. This concentrates the desired chirp signal in the optimum time–frequency domain, rejects the clutter, and improves the minimization and convergence of the adaptive mean-squared error beamformer, greatly. Simulation results show that the new method performs well under low signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schleher, D.C.: Electronic Warfare in the Information Age. Artech House Inc, Norwood (1999)

    Google Scholar 

  2. Ahmad, M.I., Sardar, M.U., Ahmad, I.: Blind beamforming using fractional Fourier transform domain cyclostationarity. Signal Image Video Process. 12(2), 379–383 (2018)

    Article  Google Scholar 

  3. Krim, H., Viberg, M.: Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    Article  Google Scholar 

  4. Applebaum, S., Chapman, D.: Adaptive arrays with main beam constraints. IEEE Trans. Ant. Propag. 24(5), 650–662 (1976)

    Article  Google Scholar 

  5. Widrow, B., Mantey, P.E., Griffiths, L.J., Goode, B.B.: Adaptive antenna systems. IEEE Proc. 55(12), 2143–2159 (1967)

    Article  Google Scholar 

  6. Frost, O.L.: An algorithm for linearly constrained adaptive array processing. IEEE Proc. 60(8), 926–935 (1972)

    Article  Google Scholar 

  7. Capon, J.: High-resolution frequency-wavenumber spectrum analysis. IEEE Proc. 57(8), 1408–1418 (1969)

    Article  Google Scholar 

  8. Yetik, I.S., Nehorai, A.: Beamforming using the fractional Fourier transform. IEEE Trans. Signal Process. 51(6), 1663–1668 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ahmad, M.I., Liu, Z., Xu, Y.: Order selection in fractional Fourier transform based beamforming. J. Syst. Eng. Electr. 21(3), 361–369 (2010)

    Article  Google Scholar 

  10. Benesty, J., Chen, J., Huang, Y., Dmochowski, J.: On microphone-array beamforming from a MIMO acoustic signal processing perspective. IEEE Trans. Audio Speech Lang. Process. 15(3), 1053–1065 (2007)

    Article  Google Scholar 

  11. Scott, L., Mulgrew, B.: Sparse LCMV beamformer design for suppression of ground clutter in airborne radar. IEEE Trans. Signal Process. 43(12), 2843–2851 (1995)

    Article  Google Scholar 

  12. Limpiti, T., Van Veen, B.D., Wakai, R.T.: Cortical patch basis model for spatially extended neural activity. IEEE Trans. Biomed Eng. 53(9), 1740–1754 (2006)

    Article  Google Scholar 

  13. Chen, R., Wang, Y.: Efficient detection of chirp signals based on the fourth-order origin moment of fractional spectrum. Circuit Syst. Signal Process. 33(5), 1585–1596 (2014)

    Article  Google Scholar 

  14. Guan, J., Chen, X.L., Huang, Y., He, Y.: Adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter. IET Radar Sonar Navig. 6(5), 389–401 (2012)

    Article  Google Scholar 

  15. Shamsunder, S., Giannakis, G.B., Friedlander, B.: Estimating random amplitude polynomial phase signals: a cyclostationary approach. IEEE Trans. Signal Process. 43(2), 492–505 (1995)

    Article  Google Scholar 

  16. Gini, F., Montanari, M., Verrazzani, L.: Estimation of chirp radar signals in compound-Gaussian clutter: a cyclostationary approach. IEEE Trans. Signal Process. 48(4), 1029–1039 (2000)

    Article  MATH  Google Scholar 

  17. Kutay, A., Ozaktas, H.M., Ankan, O., Onural, L.: Optimal filtering in fractional Fourier domains. IEEE Trans. Signal Process. 45(5), 1129–1143 (1997)

    Article  Google Scholar 

  18. Wei, D., Ran, Q.: Multiplicative filtering in the fractional Fourier domain. Signal Image Video Process. 7(3), 575–580 (2013)

    Article  Google Scholar 

  19. Ting, L.K., Cowan, C.F., Woods, R.F.: LMS coefficient filtering for time-varying chirped signals. IEEE Trans. Signal Process. 52(11), 3160–3169 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Antoni, J.: The spectral kurtosis: a useful tool for characterising nonstationary signals. Mech. Syst. Signal Process. 20(2), 282–307 (2006)

    Article  Google Scholar 

  21. Alieva, T., Bastiaans, M.J.: On fractional Fourier transform moments. IEEE Signal Process. Lett. 7(11), 320–323 (2000)

    Article  Google Scholar 

  22. Markhi, H.E., Haibala, O.M.M., Mrabti, F., Chargé, P., Zouak, M.: An improved cyclic beamforming method for signal DOA estimation. Signal Image Video Process. 1(3), 267–272 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and the anonymous referee for their valuable comments and suggestions that improved the clarity and quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ishtiaq Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M.I. Optimum FrFT domain cyclostationarity based adaptive beamforming. SIViP 13, 551–556 (2019). https://doi.org/10.1007/s11760-018-1381-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1381-y

Keywords

Navigation