Skip to main content
Log in

A fast white balance algorithm based on pixel greyness

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The goal of automatic white balance (AWB) is to maintain colour constancy of an image by removing colour cast caused by un-canonical illuminant. In this paper, we address two limitations associated with a class of AWB algorithms and propose a technique to estimate the illuminant which takes into consideration the internal illumination and all pixels of the image. The estimate is calculated by a weighted average of all pixels. The weight for a pixel is determined from the greyness. The greyness of a pixel is measured from its chroma Cb and Cr in the YCbCr colour space. The experimental results demonstrate that performance of the proposed technique is competitive with that of state-of-the-art AWB algorithms. The proposed algorithm can be implemented in real-time applications, such as in consumer digital cameras due to its low computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jung, J., Ho, Y.: Color correction algorithm based on camera characteristics for multi-view video coding. Signal Image Video Process. 8(5), 955–966 (2012). doi:10.1007/s11760-012-0341-1

    Article  Google Scholar 

  2. Sao, A., Yegnanarayana, B.: On the use of phase of the fourier transform for face recognition under variations in illumination. Signal Image Video Process. 4(3), 353–358 (2010). doi:10.1007/s11760-009-0125-4

    Article  MATH  Google Scholar 

  3. Faghih, M., Moghaddam, M.: A two-level classification-based color constancy. Signal Image Video Process (2013). doi:10.1007/s11760-013-0574-7

    Google Scholar 

  4. Khan, A., Ullah, J., Jaffar, M., Choi, T.-S.: Color image segmentation: a novel spatial fuzzy genetic algorithm. Signal Image Video Process (2012). doi:10.1007/s11760-012-0347-8

    Google Scholar 

  5. Allili, M., Ziou, D.: Active contours for video object tracking using region, boundary and shape information. Signal Image Video Process. 1(2), 101–117 (2007). doi:10.1007/s11760-007-0021-8

    Article  MATH  Google Scholar 

  6. Gevers, T., Smeulders, A.W.: Color-based object recognition. Pattern Recognit. 32(3), 453–464 (1999)

    Article  Google Scholar 

  7. Buchsbaum, G.: A spatial processor model for object colour perception. J. Franklin Inst. 310(1), 1–26 (1980)

    Article  Google Scholar 

  8. Land, E.H., McCANN, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)

    Article  Google Scholar 

  9. Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Color Imaging Conference. IS&T—The Society for Imaging Science and Technology, pp. 37–41. (2004)

  10. van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. 16(9), 2207–2214 (2007)

    Article  MathSciNet  Google Scholar 

  11. Finlayson, G.D., Hordley, S.D.: Gamut constrained illuminant estimation. Int. J. Comput. Vis. 67(1), 93–109 (2006)

    Article  Google Scholar 

  12. Finlayson, G., Hordley, S., Hubel, P.: Color by correlation: a simple, unifying framework for color constancy. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1209–1221 (2001)

    Article  Google Scholar 

  13. Cardei, V.C., Funt, B., Barnard, K.: Estimating the scene illumination chromaticity by using a neural network. J. Opt. Soc. Am. A. 19(12), 2374–2386 (2002)

    Article  Google Scholar 

  14. Hordley, S.D., Finlayson, G.D.: Reevaluation of color constancy algorithm performance. J. Opt. Soc. Am. A. 23(5), 1008–1020 (2006)

    Article  Google Scholar 

  15. Carr, P., Denis, P., Fernandez-Maloigne, C.: Spatial color image processing using clifford algebras: application to color active contour. Signal Image Video Process (2012). doi:10.1007/s11760-012-0366-5

    Google Scholar 

  16. Reinhard, E., Khan, E., Akyuz, A., Johnson, G.: Color Imaging Fundamentals and Applications. Wellesley, Massachusetts (2008)

    Google Scholar 

  17. Liu, Y.-C., Chan, W.-H., Chen, Y.-Q.: Automatic white balance for digital still camera. IEEE Trans. Consum. Electron. 41(3), 460–466 (1995)

  18. Weng, C.-C., Chen, H., Fuh, C.-S.: A novel automatic white balance method for digital still cameras. In: IEEE Conference on Circuits and Systems, pp. 3801–3804. (2005)

  19. Zhong, J., Yao, S.-Y., Xu, J.-T.: Implementation of automatic white-balance based on adaptive-luminance. Optoelectron. Lett. 5, 150–153 (2009)

    Article  Google Scholar 

  20. Agarwal, V., Abidi, B.R., Koschan, A., Abidi, M.A.: An overview of color constancy algorithms. J. Pattern Recognit. Res. 1(1), 42–54 (2006)

    Article  Google Scholar 

  21. Hunt, R.W., Li, C., Luo, M.R.: Chromatic adaptation transforms. Color Res. Appl. 30(1), 69–71 (2005)

    Article  Google Scholar 

  22. Gevers, T., Gijsenij, A., van de Weijer, J., Geusebroek, J.: Color in Computer Vision: Fundamentals and Applications. Wiley, Hoboken, New Jersey (2012)

    Book  Google Scholar 

  23. Huo, J.-Y., Chang, Y.-L., Wang, J., Wei, X.-X.: Robust automatic white balance algorithm using gray color points in images. IEEE Trans. Consum. Electron. 52(2), 541–546 (2006)

    Article  Google Scholar 

  24. West, G., Brill, M.H.: Necessary and sufficient conditions for von Kries chromatic adaptation to give color constancy. J. Math. Biol. 15(2), 249–258 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, C., Xu, L., Jia, J.: Contrast preserving decolorization. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–7. (2002)

  26. Foster, D.H., Amano, K., Nascimento, S.M.C., Foster, M.J.: Frequency of metamerism in natural scenes. J. Opt. Soc. Am. A 23, 2359–2372 (2006)

    Article  Google Scholar 

  27. Gehler, P., Rother, C., Blake, A., Minka, T., Sharp, T.: Bayesian color constancy revisited. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-8. (2008)

  28. Lynch, S.E., Drew, M.S., Finlayson, G.D.: Colour constancy from both sides of the shadow edge. In: Color and Photometry in Computer Vision Workshop at the International Conference on Computer Vision. (2013)

  29. Luo, M.R., Cui, G., Rigg, B.: The development of the CIE 2000 colour difference formula: CIEDE2000. Color Res. Appl. 26(5), 340–350 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ba Thai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thai, B., Deng, G. & Ross, R. A fast white balance algorithm based on pixel greyness. SIViP 11, 525–532 (2017). https://doi.org/10.1007/s11760-016-0990-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0990-6

Keywords

Navigation