Skip to main content
Log in

Inexact alternating direction method based on Newton descent algorithm with application to Poisson image deblurring

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The recovery of images from the observations that are degraded by a linear operator and further corrupted by Poisson noise is an important task in modern imaging applications such as astronomical and biomedical ones. Gradient-based regularizers involving the popular total variation semi-norm have become standard techniques for Poisson image restoration due to its edge-preserving ability. Various efficient algorithms have been developed for solving the corresponding minimization problem with non-smooth regularization terms. In this paper, motivated by the idea of the alternating direction minimization algorithm and the Newton’s method with upper convergent rate, we further propose inexact alternating direction methods utilizing the proximal Hessian matrix information of the objective function, in a way reminiscent of Newton descent methods. Besides, we also investigate the global convergence of the proposed algorithms under certain conditions. Finally, we illustrate that the proposed algorithms outperform the current state-of-the-art algorithms through numerical experiments on Poisson image deblurring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sarder, P., Nehorai, A.: Deconvolution method for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 23, 32–45 (2006)

    Article  Google Scholar 

  2. Müller, J., Brune, C., Sawatzky, A., Kösters, T., Schäfers, K., Burger, M.: Reconstruction of short time PET scans using Bregman iterations. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 2383–2385. (2011)

  3. Bertero, M., Boccacci, P., Desiderà, G., Vicidomini, G.: Image deblurring with Poisson data: from cells to galaxies. Inverse Probl. 25, 123006 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Csiszár, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19, 2032–2066 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candes, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise-\(C^{2}\) singularities. Commun. Pure Appl. Math. 57, 219–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14(1), 1–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, D.Q., Cheng, L.Z.: Deconvolving Poissonian images by a novel hybrid variational model. J. Visual Commun. Image Rep. 22(7), 643–652 (2011)

    Article  Google Scholar 

  9. Steidl, G., Weickert, J., Brox, T., Mrazek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM J. Numer. Anal. 42(2), 686–713 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, J.F., Dong, B., Osher, S., Shen, Z.W.: Image restoration: total variation, wavelet frames, and beyond. J. Am. Math. Soc. 25(4), 1033–1089 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sawatzky, A., Brune, C., Wubbeling, F., Kosters, T., Schafers, K., Burger, M.: Accurate EM–TV algorithm in PET with low SNR. In: IEEE Nuclear Science Symposium Conference Record, pp. 5133–5137. (2008)

  12. Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Probl. 25, 015002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bonettini, S., Ruggiero, V.: An alternating extragradient method for total variation based image restoration from Poisson data. Inverse Probl. 27, 095001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Visual Commun. Image Rep. 21(3), 193–199 (2010)

    Article  Google Scholar 

  15. Afonso, M., Bioucas-Dias, J., Figueiredo, M.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  Google Scholar 

  16. Chen, D.Q., Cheng, L.Z.: Spatially adapted regularization parameter selection based on the local discrepancy function for Poissonian image deblurring. Inverse Probl. 28, 015004 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Day, N., Blanc-Feraud, L., Zimmer, C., Roux, P., Kam, Z., Olivo-Marin, J.-C., Zerubia, J.: Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech. 69(4), 260–266 (2006)

    Article  Google Scholar 

  18. Woo, H., Yun, S.: Proximal linearized alternating direction method for multiplicative denoising. SIAM J. Sci. Comput. 35(2), 336–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, D.Q., Zhou, Y.: Multiplicative denoising based on linearized alternating direction method using discrepancy function constraint. J. Sci. Comput. 60(3), 483–504 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cai, J.F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jeong, T., Woo, H., Yun, S.: Frame-based Poisson image restoration using a proximal linearized alternating direction method. Inverse Probl. 29(7), 075007 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, D.Q.: Regularized generalized inverse accelerating linearized alternating minimization algorithm for frame-based Poissonian image deblurring. SIAM J. Imag. Sci. 7(2), 716–739 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Technical Report 08-34, CAM UCLA. (2008)

  24. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imag. Sci. 3(4), 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Landi, G., Piccolomini, E.L.: NPTool: a Matlab software for nonnegative image restoration with Newton projection methods. Numer. Algorithms 62(3), 487–504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. SIAM Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Barzilai, J., Borwein, J.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Avriel, M.: Nonlinear Programming: Analysis and Methods. Dover Publications Inc., Mineola (2003)

    MATH  Google Scholar 

  30. Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Qiang Chen.

Additional information

The work was supported in part by the National Natural Science Foundation of China under Grant 61401473 and 61271014.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

The proof of Theorem 1 is similar to the previous literature [19, 20]. Only some changes are needed due to the introduction of the Newton descent algorithm. The entire proof is not reproduced here due to limited space. Just enough is sketched to make the changes clear.

Proof

Denote \(L_{k}=(\omega ^{k})^{-1}\left( \delta ^{k} K^{T}K + \alpha \nabla ^{T}\nabla \right) \). According to the iterative formula with respect to u, we know that \(u^{k+1}\) is the solution of the minimization problem

$$\begin{aligned} \small { \begin{aligned} \min \limits _{u\in U} \left\{ \langle \nabla D_{f}(u^{k}) + \alpha \text {div}(d^{k}-\nabla u^{k}) + \text {div} p^{k}, \right. \\ \left. u-u^{k}\rangle + \frac{1}{2}(u - u^{k})^{T}L_{k}(u - u^{k}) \right\} . \end{aligned} } \end{aligned}$$
(19)

Therefore, the sequence \(\{u^{k}, d^{k}, p^{k}\}\) generated by the IADMNDA algorithm satisfies

$$\begin{aligned} \left\{ \begin{array}{lll}\nabla D_{f}(u^{k}) + L_{k}(u^{k+1}-u^{k})+\alpha \nabla ^{T}(\nabla u^{k}-d^{k}-\alpha ^{-1}p^{k}) + \partial \iota _{U}(u^{k+1})\ni 0, &{}~ &{}~ ~\\ \lambda \partial \Vert d^{k+1}\Vert _{1} + \alpha (d^{k+1}-\nabla u^{k+1}+\alpha ^{-1}p^{k})\ni 0, &{}~ &{}~ ~\\ p^{k+1}=p^{k} + \alpha (d^{k+1}-\nabla u^{k+1})&{} ~ &{}~ \end{array} \right. \end{aligned}$$
(20)

Because \(\left( u^{*}, d^{*}, p^{*}\right) \) is one solution of (16), it is also the KKT point that satisfies (17).

Similarly to [19, 20], denote the errors by \(u^{k}_{e} = u^{k}-u^{*}\), \(d^{k}_{e} = d^{k}-d^{*}\), and \(p^{k}_{e} = p^{k}-p^{*}\). Utilizing the subtraction between (20) and (17), taking the inner product with \(u^{k+1}_{e}\), \(d^{k+1}_{e}\) and \(p^{k}_{e}\), and removing the non-negative terms, we further obtain that

$$\begin{aligned} \begin{aligned}&\frac{1}{\alpha }\Vert p^{k+1}_{e}\Vert ^{2}_{2} + \alpha \Vert d^{k+1}_{e}\Vert ^{2}_{2} + \left( \Vert u^{k+1}_{e}\Vert ^{2}_{L_{k}}+ \Vert u^{k+1}_{e}\Vert ^{2}_{\nabla ^{2}D_{f}(\zeta ^{k})} \right. \\&\left. \quad +\,\Vert u^{k}_{e}\Vert ^{2}_{\nabla ^{2}D_{f}(\zeta ^{k})} -\alpha \Vert \nabla u^{k+1}_{e}\Vert ^{2}_{2}\right) + \alpha \Vert d^{k} - \nabla u^{k+1}\Vert _{2}^{2}\\&\quad + \left( \Vert u^{k+1}-u^{k}\Vert ^{2}_{L_{k}}-\Vert u^{k+1}-u^{k}\Vert ^{2}_{\nabla ^{2}D_{f}(\zeta ^{k})} -\alpha \Vert \nabla (u^{k+1}-u^{k})\Vert ^{2}_{2}\right) \\&\le \frac{1}{\alpha }\Vert p^{k}_{e}\Vert ^{2}_{2} + \alpha \Vert d^{k}_{e}\Vert ^{2}_{2} + \Vert u^{k}_{e}\Vert ^{2}_{L_{k}}-\alpha \Vert \nabla u^{k}_{e}\Vert ^{2}_{2}. \end{aligned} \end{aligned}$$
(21)

where \(\zeta ^{k}\in [u^{*}, u^{k}]\), with \([u^{*}, u^{k}]\) denoting the line segment between \(u^{*}\) and \(u^{k}\). Since \(\delta _{\min }\ge \overline{\gamma _{D}}\), we can easily deduce that the last term of the left side of the inequality (21) is non-negative.

According to the definition of \(\omega ^{k}\) in Algorithm 1, we know that \(\omega ^{k}\) is monotone non-increasing, and hence, there exists \(\omega ^{*}\) such that \(\lim \limits _{k\rightarrow +\infty }\omega ^{k}=\omega ^{*}\).

Denote \(\small {\tilde{L}_{k}=(\omega ^{*})^{-1}\left( \delta ^{k} K^{T}K + \alpha \nabla ^{T}\nabla \right) }\). By the boundedness of \(\delta ^{k}\) and \(\lim \limits _{k\rightarrow +\infty }\omega ^{k}=\omega ^{*}\) we have that

$$\begin{aligned} \lim \limits _{k\rightarrow +\infty } \tilde{L}_{k}-L_{k}=\mathbf 0 . \end{aligned}$$
(22)

Since \(\delta ^{k+1}-\delta ^{k}\le \underline{\gamma _{D}}\), we know that \(\delta ^{k}K^{T}K + \nabla ^{2}D_{f}(\zeta ^{k})\succeq \delta ^{k+1}K^{T}K\) according to the condition (18). Therefore, by the definition of \(\tilde{L}_{k}\) we further have

$$\begin{aligned} \begin{aligned}&\Vert u^{k+1}_{e}\Vert ^{2}_{\tilde{L}_{k}}+ \Vert u^{k+1}_{e}\Vert ^{2}_{\nabla ^{2}D_{f}(\zeta ^{k})}-\alpha \Vert \nabla u^{k+1}_{e}\Vert ^{2}_{2}\\&\quad \ge \Vert u^{k+1}_{e}\Vert ^{2}_{\tilde{L}_{k+1}}-\alpha \Vert \nabla u^{k+1}_{e}\Vert ^{2}_{2}\ge 0. \end{aligned} \end{aligned}$$
(23)

According to (22), we can easily conclude that there exists some \(k_{0}\) such that

$$\begin{aligned} \sum _{k=k_{0}}^{+\infty }\left( \Vert u^{k}_{e}\Vert ^{2}_{\frac{1}{2}\nabla ^{2}D_{f}(\zeta ^{k})} + \Vert u^{k+1}_{e}\Vert ^{2}_{L_{k}-\tilde{L}_{k}}-\Vert u^{k}_{e}\Vert ^{2}_{L_{k}-\tilde{L}_{k}}\right) >0. \end{aligned}$$

In the next, summing (21) from some \(k_{0}\) to \(+\infty \), utilizing (23), and removing the other non-negative terms, we obtain that

$$\begin{aligned} \lim _{k\rightarrow +\infty }\Vert u^{k}-u^{*}\Vert ^{2}_{\frac{1}{2}\nabla ^{2}D_{f}(\zeta ^{k})}=0. \end{aligned}$$
(24)

Due to \(\Vert u^{k}-u^{*}\Vert ^{2}_{\frac{1}{2}\nabla ^{2}D_{f}(\zeta ^{k})}\ge \frac{1}{2}\underline{\gamma _{D}} \Vert Ku^{k}-Ku^{*}\Vert ^{2}_{2}\), we get

$$\begin{aligned} \lim \limits _{k\rightarrow +\infty }\Vert Ku^{k}-Ku^{*}\Vert _{2}=0. \end{aligned}$$

Due to \(\Vert K^{T}K\Vert _{2}>0\), we further have \(\lim \limits _{k\rightarrow +\infty }\Vert u^{k}-u^{*}\Vert _{2}=0\), which implies that \(\{u^{k}\}\) converges to a solution of the minimization problem (16). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, DQ. Inexact alternating direction method based on Newton descent algorithm with application to Poisson image deblurring. SIViP 11, 89–96 (2017). https://doi.org/10.1007/s11760-016-0973-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0973-7

Keywords

Navigation