Skip to main content

Advertisement

Log in

The development of SSR markers from the endangered plant Tetracentron sinense Oliv. (Tetracentraceae) based on RAD–seq technique

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Conservation genetics research of Tetracentron sinense, an endangered tree species in China used as medicine, ornament, and for its timber, depends on development of fast–evolving and reliable genetic markers. A simplified genome sequence was obtained by restrictive–site associated DNA sequencing based on high throughput sequencing and used to develop primers for identification of simple sequence repeat (SSR) molecular markers suitable for T. sinense. The results showed that 121,022 SSR loci obtained in 114,350 SSR containing sequences, which included mononucleotide repeats (59.14%), dinucleotide repeats (28.71%), and trinucleotide repeats (9.97%). These SSR sequences were used to design 1212 primers to detect the polymorphism. Therein, 67 pairs of primers containing 2–6 nucleotide repeats were selected for PCR amplification of 16 samples collected from four populations. Forty–eight primers were polymorphic, and the PIC values varied from 0 to 0.9297, with the average of 0.7168. Finally, 21 pairs of SSR primers suitable for T. sinense were screened. These results suggest that the species of T. sinense which without genomic information, the newly developed SSR primers provide a foundation for the analysis of genetic diversity, genetic variation, genetic structure, population dynamic history and development of effective conservation and management technology of T. sinense germplasm resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All data generated or analysed during this study are included in this published article.

Abbreviations

HTS:

High throughput sequencing.

SSR:

Simple sequence repeat.

RAD–seq:

Restriction site–Associated DNA sequencing.

PCR:

Polymerase Chain Reaction.

References

  • Acquadro A, Barchi L, Portis E et al (2016) RAD2seq: an efficient protocol for plant genotyping by sequencing. Acta Hort 1147:1–8

    Google Scholar 

  • Anderson J, Churchill GA, Autrique JE et al (1993) Optimizing parental selection for genetic linkagemaps. Genome 36(1):181–186. https://doi.org/10.1139/g93-024

    Article  CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376. https://doi.org/10.1371/journal.pone.0003376

    Article  CAS  Google Scholar 

  • Beier S, Thiel T, Münch T et al (2017) MISA–web: a web server for microsatellite prediction. Bioinformatics 33(15):2583–2585. https://doi.org/10.1093/bioinformatics/btx198

    Article  CAS  Google Scholar 

  • Blanca J, Cañizares J, Roig C et al (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 12(1):104–118. https://doi.org/10.1186/1471-2164-12-104

    Article  CAS  Google Scholar 

  • Cao LL, Gan XH, He S et al (2012) Effect of different geographical provenances and matrix on seed germination and seeding initial growth of Tetracentron sinense. Guihaia 32(5):656–662

    Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S et al (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22(11):3124–3140. https://doi.org/10.1111/mec.12354

    Article  Google Scholar 

  • Chagné D, Chaumeil P, Ramboer A et al (2004) Cross–species transferability and mapping of genomic and cDNA SSRs in pines. Theor Appl Genet 109(6):1204–1214. https://doi.org/10.1007/s00122-004-1683-z

    Article  CAS  Google Scholar 

  • Chen J, Dong S, Zhang X et al (2021) Genetic diversity of Prunus sibirica L. superior accessions based on the SSR markers developed using restriction-site associated DNA sequencing. Genet Resour Crop Evol 68(2):615–628. https://doi.org/10.1007/s10722-020-01011-5

    Article  CAS  Google Scholar 

  • Danecek P, Auton A, Abecasis G (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    Article  CAS  Google Scholar 

  • Dang SF, Wang ZL, Zhang DF et al (2016) University Characteristic analysis of microsatellites of lycium barbarum. J Northwest Forestry 31(1):97–102

    Google Scholar 

  • Fan W, Li W, Zhang X et al (2021) Photosynthetic physiological characteristics of Tetracentron sinense oliv. in different DBH classes and the factors restricting regeneration. Journal of Plant Growth Regulation 1–10. https://doi.org/10.1007/s00344-021-10421-3

  • Frankel OH, Soulé ME (1981) Conservation and evolution. Cambridge, USA, pp 1–55

    Google Scholar 

  • Fu DZ, Bruce B (2001) Tetracentraceae. Flora of China. Beijing, China

    Google Scholar 

  • Fu LK, Jin JM (1992) Plant red book in China–rare and endangered plants. Beijing, China

    Google Scholar 

  • Gan XH, Cao LL, Zhang XM et al (2013) Floral biology, breeding system and pollination ecology of an endangered tree Tetracentron sinense Oliv. (Trochodendraceae). Botanical studies 54(1):50–59. https://doi.org/10.1186/1999-3110-54-50

  • Garg R, Patel RK, Tyagi AK et al (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18(1):53–63. https://doi.org/10.1093/dnares/dsq028

    Article  CAS  Google Scholar 

  • Han HY, Xu N, Li S et al (2015) The effect of low temperature during imbibition on germination characteristics of Tetracentron sinense (Tetracentraceae) seeds. Plant Div Res 37(5):586–594

  • Han P, Ruan CJ, Ding J et al (2019) Development of SSR Markers of Target–Genes in Paeonia suffruticosa Andr. var. papaveracea Kerner by RNA–seq Technology. Mol Plant Breed 17(11):3665–3673

    Google Scholar 

  • Labbé J, Zhang XY, Yin TM et al (2008) A genetic linkage map for the ectomycorrhizal fungus Laccaria bicolor and its alignment to the whole-genome sequence assemblies. New Phytol 180(2):316–328. https://doi.org/10.1111/j.1469-8137.2008.02614.x

    Article  CAS  Google Scholar 

  • Lepais O, Bacles CFE (2011) Denovo Discovery and Multiplexed Amplification of Microsatellite Markers for Black Alder (Alnus glutinosa) and Related Species Using SSR–Enriched Shotgun Pyrosequencing. J Hered 102(5):627–632

    Article  CAS  Google Scholar 

  • Li GP, Cao FL (2012) Development of EST–SSR Primer from Ginkgo biloba. Acta Agriculturae Boreali-Occidentalis Sinica 12(12):149–152

    Google Scholar 

  • Li S, Gan XH, Han HY et al (2018) Low within–population genetic diversity and high genetic differentiation among populations of the endangered plant Tetracentron sinense Oliver revealed by inter-simple sequence repeat analysis. Annals of Forest Science 75(3):74–84. https://doi.org/10.1007/s13595-018-0752-4

  • Li YL, Yang XX, Zhang JY et al (2014) Studies on SSR Molecular Markers Based on Transcriptome of Taxus chinensis var. mairei. Acta Horticulturae Sinica 41(4):735–745

  • Liu F (2015) The development of simple sequence repeat markers from Asparagus Officinalis based on High–Throughput Sequecing. Dessertation, Henan Normal University

  • Lu X, Xu N, Chen Y et al (2021) Effects of light intensity and ground cover on seedling regeneration of Tetracentron sinense oliv. Journal of Plant Growth Regulation 40(1):736–748. https://doi.org/10.1007/s00344-020-10137-w

  • Luo RB, Liu BH, Xie YL et al (2012) SOAPdenovo2: an empirically improved memory–efficient short read denovo assembler. GigaScience 1(1):18–23

    Article  Google Scholar 

  • Mi Q, Long ZC, Kamau MJ et al (2015) Development of SSR Markers in Giant Lobelia (Lobelia deckenii) Based on Next–generation High–throughput Sequencing. Plant Sci J 33(6):847–854

    Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30(2):194–200. https://doi.org/10.1038/ng822

    Article  CAS  Google Scholar 

  • Muir G, Filatov D (2007) A Selective Sweep in the Chloroplast DNA of Dioecious Silene (Section Elisanthe). Genetics 177(2):1239–1247. https://doi.org/10.1534/genetics.107.071969

    Article  CAS  Google Scholar 

  • Powell W, Machray GC, Provan J et al (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1(7):215–222

    Article  Google Scholar 

  • Rozen S, skaletsky H (2000) Primers3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132(3):365–386. https://doi.org/10.1385/1-59259-192-2:365

    Article  CAS  Google Scholar 

  • Schlotterer C (2001) Genealogical inference of closely related species based on microsatellites. Genet Res 78(3):209–212

    Article  CAS  Google Scholar 

  • Sun YX, Moore MJ, Yue LL et al (2014) Chloroplast phylogeography of the East Asian Arcto–Tertiary relict Tetracentron sinense (Trochodendraceae).Journal of Biogeography 41(9):1721–1732. https://doi.org/10.1111/jbi.12323

  • Tian ZQ, Li HC, Li WY et al (2018) Structural characteristics and niches of dominant tree populations in Tetracentron sinense communities: Implications for conservation.Botanical Sciences 96(2):157–167

  • Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer 3–new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends in Biotechnology 23(1):48–55. https://doi.org/10.1016/j.tibtech.2004.11.005

  • Wang L, Du H, Li T et al (2018) De novo transcriptome sequencing and identification of genes related to salt stress in Eucommia ulmoides Oliver. Trees 32:151–163. https://doi.org/10.1007/s00468-017-1620-9

    Article  CAS  Google Scholar 

  • Wang M, Ying DS, Wang QF et al (2015) Development and characteristics analysis of microsatellite marker in mango (Mangifera indica L.) by using 454 GSFLX high–throughput sequencing. J South Agric 46(10):1745–1749. doi:https://doi.org/10.3969/j:issn.2095-1191.2015.10.1745

    Article  CAS  Google Scholar 

  • Wang YF, Lai GF, Efferth T (2006) New glycosides from Tetracentron sinense and their cytotoxic activity. Chem Biodivers 3(9):1023–1030. https://doi.org/10.1002/(ISSN)1612-1880

    Article  CAS  Google Scholar 

  • Wyman J, Bruneau A, Tremblay M et al (2003) Microsatellite analysis of genetic diversity in four populations of Populus tremuloides in Quebec. Can J Bot 81(4):360–367. https://doi.org/10.1139/b03-021

    Article  Google Scholar 

  • Yang J, Hu G, Hu G (2022) Comparative genomics and phylogenetic relationships of two endemic and endangered species (Handeliodendron bodinieri and Eurycorymbus cavaleriei) of two monotypic genera within Sapindales. BMC Genomics 23:27. https://doi.org/10.1186/s12864-021-08259-w

    Article  CAS  Google Scholar 

  • Yang Z, Lu R, Tao C et al (2012) Microsatellites for Tetracentron sinense (Trochodendraceae), a Tertiary relict endemic to East Asia. Am J Bot 99(8):320–322. https://doi.org/10.3732/ajb.1200012

    Article  Google Scholar 

  • Ye LP, Lao SY, Lü YP et al (2009) ISSR Mark and Its Application in the Genetics of Aquatic Organisms. J Lishui Univ 31(5):18–20

    CAS  Google Scholar 

  • Zhang XY (2009) Development of EST–SSR in Populus deltoides and P. euramericana. Scientia Silvae Sinicae 45(9):54–59. doi:https://doi.org/10.1007/978-1-4020-9623-5_5

    Article  Google Scholar 

  • Zhou XJ, Wang HL, Ling FL et al (2019) Development of polymorphic SSR markers in Rhododendron henanense subsp. lingbaoense based on RAD–seq. J Agricultural Biotechnol 27(1):55–62

    Google Scholar 

  • Zuo L, Zhang S, Zhang J et al (2020) Primer development and functional classification of EST–SSR markers in Ulmus species. Tree Genet Genomes 16(5):74–84. https://doi.org/10.1007/s11295-020-01468-6

    Article  Google Scholar 

Download references

Acknowledgements

We thank all students who helped to collect materials and analyze data: Wei–Li Mao, Huan Zhang, Yang Chen, Xue–Mei Xu and Shan Li. This work was supported by National Natural Science Foundation of China (NO. 32070371).

Funding

This work was supported by National Natural Science Foundation of China (NO. 32070371).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Zhong–Qiong Tian], Methodology: [Zhong–Qiong Tian], Formal analysis and investigation: [Fan Duan], Writing-original draft preparation: [Zhong–Qiong Tian], Writing-review and editing: [Xiao–Hong Gan], Funding acquisition: [Xiao–Hong Gan], Resources: [Xiao–Hong Gan], Supervision: [Shan Li ].

Corresponding author

Correspondence to Xiao-Hong Gan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

This manuscript does not contain any studies with human participants performed by any of the authors.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Duan, F., Li, S. et al. The development of SSR markers from the endangered plant Tetracentron sinense Oliv. (Tetracentraceae) based on RAD–seq technique. Biologia 78, 15–22 (2023). https://doi.org/10.1007/s11756-022-01109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-022-01109-4

Keywords

Navigation