Skip to main content
Log in

Genetic diversity of Prunus sibirica L. superior accessions based on the SSR markers developed using restriction-site associated DNA sequencing

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Prunus sibirica (Siberian apricot) has ecological, economic, and social benefits that makes it an important fruit-bearing tree in China. However, current fruit yields are low and unstable, thus restricting development of Prunus sibirica industry. To provide a scientific basis for successful breeding research aimed at developing superior cultivars, 98 screened SSR markers were first used in our study, developed by restriction-site associated DNA sequencing, to assess the genetic diversity of 66 Prunus sibirica accessions collected from four populations. The average number of alleles per locus (9.910) and the number of effective alleles (5.445) showed high polymorphism in the entire population, and the polymorphism information content (0.675) indicated that these markers were highly polymorphic. There was gene flow among the Prunus sibirica accessions, however the genetic differentiation coefficient showed 15.4% gene frequency differentiation among the provenances. Meanwhile, extensive linkage disequilibrium (D′ > 0.5, P < 0.01) was found, however the overall level was low (r2 < 0.5, p < 0.01). Additionally, the 66 accessions clustered into four groups, and these groups were extremely significantly correlated with the provenances classification. The clustering results showed that geographical distribution and genetic diversity changed from high to low as the geographic separation between provenances increased. Furthermore, population structure analysis supported these findings as genetic structure and provenances were extremely significantly correlated (p < 0.01). Additionally, the relationships between the geographical and genetic distances of the provenances and of the individuals were significantly correlated, indicating that geographical isolation importantly influenced Prunus sibirica evolution. The geographic and genetic effects underlying the superior accessions which we selected provide a reference for future molecular marker assisted breeding of Prunus sibirica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger A, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30:2114–2120

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang ZW, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–98

    Article  CAS  PubMed  Google Scholar 

  • Dong SB, Liu YL, Niu J, Ning Y, Lin SZ, Zhang ZX (2014) De novo transcriptome analysis of the Siberian apricot (Prunus sibirica L.) and search for potential SSR markers by 454 pyrosequencing. Gene 544(2):220–227

    Article  CAS  PubMed  Google Scholar 

  • Du QZ (2014) Dissection of allelic variation underlying important traits in Populus tomentosa Carr. by using joint linkage and linkage disequilibrium mapping. Dissertation/Master’s Thesis. Beijing Forestry University

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Filippi CV, Merino GA, Montecchia JF, Aguirre NC, Rivarola M, Naamati G, Fass MI, Álvarez D, Rienzo JD, Heinz RA, Moreira BC, Lia VV, Paniego NB (2020) Genetic diversity, population structure and linkage disequilibrium assessment among international sunflower breeding collections. Genes 11(3):283

    Article  CAS  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 06:13

    Article  Google Scholar 

  • Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhao Z, Miao XJ, Zhou JJ (2014) Genetic diversity and population structure of Siberian apricot (Prunus sibirica L.) in China. Int J Mol Sci 15:377–400

    Article  Google Scholar 

  • Li M, Zheng PG, Ni BY, Hu X, Miao XJ, Zhao Z (2018) Genetic diversity analysis of apricot cultivars grown in China based on SSR markers. Eur J Hortic Sci 83:18–27

    Article  Google Scholar 

  • Liu MP (2011) Genetic diversity of Armeniaca cathayana based on SSR and ISSR analysis. Dissertation/Master’s thesis. Beijing Forestry University

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu HB, Liu J, Wang Z, Ma LY, Wang SQ, Lin XG, Wu RL, Pang XM (2013) Development and characterization of microsatellite markers in Prunus sibirica (Rosaceae). Appl Plant Sci 1(3):253–255

    Google Scholar 

  • Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175:879–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantel N (1967) Ranking procedures for arbitrarily restricted observation. Biometrics 23:65–78

    Article  CAS  PubMed  Google Scholar 

  • Miller MP, Knaus BJ, Mullins TD, Haig SM (2013) SSR pipeline: A bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data. J Hered 104:881–885

    Article  CAS  PubMed  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 09:325–330

    Article  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neilsen R (2005) Molecular signatures of natural selection. Ann Rev Gen 39:197–218

    Article  Google Scholar 

  • Niu SZ, Song QF, Koiwa H, Qiao DH, Zhao DG, Chen ZW, Liu X, Wen XP (2019) Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou plateau, using genome-wide SNPs developed by genotyping-by-sequencing. BMC Plant Biol 19(1):328

    Article  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio-Moraga A, Cande-Perez D, Lucas-Borja ME, Tiscar PA, Viñegla B, Linares JC, Gómez-Gómez L, Ahrazem O (2012) Genetic diversity of Pinus nigra Arn. Populations in Southern Spain and Northern Morocco revealed by inter-simple sequence repeat profiles. Int J Mol Sci 13(5):5465–5658

    Article  Google Scholar 

  • Sanchez M, Ingrouille MJ, Cowan RS, Hamilton MA, Fay MF (2014) Spatial structure and genetic diversity of natural populations of the Caribbean pine, Pinus caribaea var bahamensis (PInaceae), in the Bahaman archipelago. Bot J LInnean Socirty 174(3):359–383

    Article  Google Scholar 

  • Smith JSC, Chine CL, Shu H (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thistlethwaite FR, El-Dien OG, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, Ingvarsson PK, El-Kassaby YA (2020) Linkage disequilibrium vs. pedigree: genomic selection prediction accuracy in conifer species. PLoS ONE 15(6):e0232201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2014) Primer3: new capabilities and interfaces. Nucl Acids Res 40(15):e115

    Article  Google Scholar 

  • Wang MX (2001) Forest tree genetics and breeding. China Forestry Publishing House, Beijing

    Google Scholar 

  • Wang YX (2008) A molecular genetic linkage map for hybrid population of Populus adenopoda × P. alba and a comparative map in Populus. Dissertation/Doctor’s thesis. Nanjing Forestry University

  • Wang CH, Tian YK, Zhao J (2005) General application analysis of SSRs derived from apple (Malus pumila) on other species in Rosaceae. Acta Hortic Sin 32:500–502

    CAS  Google Scholar 

  • Wang J, Wei AZ, Yang TX (2011) The analysis and comprehensive valuation on manyquantitative characters of different apricots. Northern Hortic 12:5–9

    Google Scholar 

  • Wang Z, Liu HB, Liu J, Li YY, Wu RL, Pang XM (2014) Mining new microsatellite markers for Siberian apricot (Prunus sibirica L.) from SSR-enriched genomic library. Sci Hortic 16:65–69

    Article  Google Scholar 

  • Yu HP (2013) Development of simple sequence repeat (SSR) markers from Paeonia ostia and its unilization in genetic relationshio analysis. Dissertation/Master’s thesis. Beijing Forestry University

  • Zhang HX, Weng JF, Zhang XC, Liu CL, Yong HJ, Hao ZF, Li XH (2014) Genome-wide association analysis of kernel row number in maize. Acta Agron Sin 40:1–6

    Article  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Program of China (SQ2019YFD100071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjun Dong.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Dong, S., Zhang, X. et al. Genetic diversity of Prunus sibirica L. superior accessions based on the SSR markers developed using restriction-site associated DNA sequencing. Genet Resour Crop Evol 68, 615–628 (2021). https://doi.org/10.1007/s10722-020-01011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-01011-5

Keywords

Navigation