Skip to main content

Advertisement

Log in

Perioperative transfusion and long-term mortality after cardiac surgery: a meta-analysis

  • Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Objectives

Cardiac surgical procedures are associated with a high incidence of periprocedural blood loss and blood transfusion. Although both may be associated with a range of postoperative complications there is disagreement on the impact of blood transfusion on long-term mortality. This study aims to provide a comprehensive review of the published outcomes of perioperative blood transfusion, examined as a whole and by index procedure.

Methods

A systematic review of perioperative blood transfusion cardiac surgical patients was conducted. Outcomes related to blood transfusion were analysed in a meta-analysis and aggregate survival data were derived to examine long-term survival.

Results

Thirty-nine studies with 180,074 patients were identified, the majority (61.2%) undergoing coronary artery bypass surgery. Perioperative blood transfusions were noted in 42.2% of patients and was associated with significantly higher early mortality (OR 3.87, p < 0.001). After a median of 6.4 years (range 1–15), mortality remained significantly higher for those who received a perioperative transfusion (OR 2.01, p < 0.001). Pooled hazard ratio for long-term mortality similar for patients who underwent coronary surgery compared to isolated valve surgery. Differences in long-term mortality for all comers remained true when corrected for early mortality and when only including propensity matched studies.

Conclusions

Perioperative red blood transfusion appears to be associated with a significant reduction in long-term survival for patients after cardiac surgery. Strategies such as preoperative optimisation, intraoperative blood conservation, judicious use of postoperative transfusions, and professional development into minimally invasive techniques should be utilised where appropriate to minimise the need for perioperative transfusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BT:

Blood transfusion

CABG:

Coronary artery bypass grafting

CI:

Confidence interval

HR:

Hazard ratio

LVEF:

Left ventricular ejection fraction

NT:

No transfusion

OR:

Odds ratio

SD:

Standard deviation

References

  1. Karkouti K, Wijeysundera DN, Yau TM, Beattie WS, Abdelnaem E, McCluskey SA, et al. The independent association of massive blood loss with mortality in cardiac surgery. Transfusion. 2004;44:1453–62. https://doi.org/10.1111/j.1537-2995.2004.04144.x.

    Article  PubMed  Google Scholar 

  2. Ranucci M, Bozzetti G, Ditta A, Cotza M, Carboni G, Ballotta A. Surgical reexploration after cardiac operations: why a worse outcome? Ann Thorac Surg. 2008;86:1557–62. https://doi.org/10.1016/j.athoracsur.2008.07.114.

    Article  PubMed  Google Scholar 

  3. Paone G, Likosky DS, Brewer R, Theurer PF, Bell GF, Cogan CM, et al. Transfusion of 1 and 2 units of red blood cells is associated with increased morbidity and mortality. Ann Thorac Surg. 2014;97:87–93. https://doi.org/10.1016/j.athoracsur.2013.07.020.

    Article  PubMed  Google Scholar 

  4. Smilowitz NR, Oberweis BS, Nukala S, Rosenberg A, Zhao S, Xu J, et al. Association between anemia, bleeding, and transfusion with long-term mortality following noncardiac surgery. Am J Med. 2016;129:315-23.e2. https://doi.org/10.1016/j.amjmed.2015.10.012.

    Article  PubMed  Google Scholar 

  5. Shishehbor MH, Madhwal S, Rajagopal V, Hsu A, Kelly P, Gurm HS, et al. Impact of blood transfusion on short- and long-term mortality in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol Intv. 2009;2:46–53. https://doi.org/10.1016/j.jcin.2008.09.011.

    Article  Google Scholar 

  6. Wu H-L, Tai Y-H, Lin S-P, Chan M-Y, Chen H-H, Chang K-Y. The impact of blood transfusion on recurrence and mortality following colorectal cancer resection: a propensity score analysis of 4,030 patients. Sci Rep. 2018;8:13345–8. https://doi.org/10.1038/s41598-018-31662-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pattakos G, Koch CG, Brizzio ME, Batizy LH, Sabik JF, Blackstone EH, et al. Outcome of patients who refuse transfusion after cardiac surgery: a natural experiment with severe blood conservation. Arch Intern Med. 2012;172:1154–60. https://doi.org/10.1001/archinternmed.2012.2449.

    Article  PubMed  Google Scholar 

  8. Mazer CD, Whitlock RP, Fergusson DA, Hall J, Belley-Cote E, Connolly K, et al. Restrictive or liberal red-cell transfusion for cardiac surgery. N Engl J Med. 2017;377:2133–44. https://doi.org/10.1056/NEJMoa1711818.

    Article  PubMed  Google Scholar 

  9. Mazer CD, Whitlock RP, Fergusson DA, Belley-Cote E, Connolly K, Khanykin B, et al. Six-month outcomes after restrictive or liberal transfusion for cardiac surgery. N Engl J Med. 2018;379:1224–33. https://doi.org/10.1056/NEJMoa1808561.

    Article  PubMed  Google Scholar 

  10. Task Force on Patient Blood Management for Adult Cardiac Surgery of the European Association for Cardio-Thoracic Surgery (EACTS) and the European Association of Cardiothoracic Anaesthesiology (EACTA), Boer C, Meesters MI, Milojevic M, Benedetto U, Bolliger D, et al. 2017 EACTS/EACTA Guidelines on patient blood management for adult cardiac surgery. J Cardiothorac Vasc Anesth. 2018;32:88–120. https://doi.org/10.1053/j.jvca.2017.06.026.

    Article  CAS  PubMed  Google Scholar 

  11. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535-5. https://doi.org/10.1136/bmj.b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13–10. https://doi.org/10.1186/1471-2288-5-13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:1–13. https://doi.org/10.1186/1471-2288-14-135.

    Article  Google Scholar 

  14. Borenstein M, Hedges LV, Higgins J, Rothstein HR. Random-effects model introduction to meta-analysis. New Jersey: Wiley; 2009. p. 69–75.

    Book  Google Scholar 

  15. Swisher SG, Holmes EC, Hunt KK, Gornbein JA, Zinner MJ, McFadden DW. Perioperative blood transfusions and decreased long-term survival in esophageal cancer. J Thorac Cardiovasc Surg. 1996;112:341–8. https://doi.org/10.1016/S0022-5223(96)70260-X.

    Article  CAS  PubMed  Google Scholar 

  16. Abe T, Amano H, Hanada K, Minami T, Yonehara S, Hattori M, et al. Perioperative red blood cell transfusion is associated with poor long-term survival in pancreatic adenocarcinoma. Anticancer Res. 2017;37:5863–70. https://doi.org/10.21873/anticanres.12031.

    Article  PubMed  Google Scholar 

  17. Marques MC, Ribeiro HSC, Costa WL, Diniz AL, Godoy AL, Farias IC, et al. Intraoperative blood transfusion is a predictor of long-term survival in high-risk patients with resected colorectal liver metastases (CLM). HPB. 2016;18:e169. https://doi.org/10.1016/j.hpb.2016.02.403.

    Article  Google Scholar 

  18. van de Watering LM, Brand A, Houbiers JG, Klein Kranenbarg WM, Hermans J, van de Velde C, et al. Perioperative blood transfusions, with or without allogeneic leucocytes, relate to survival, not to cancer recurrence. Br J Surg. 2001;88:267–72. https://doi.org/10.1046/j.1365-2168.2001.01674.x.

    Article  PubMed  Google Scholar 

  19. Jensen LS, Puho E, Pedersen L, Mortensen FV, Sørensen HT. Long-term survival after colorectal surgery associated with buffy-coat-poor and leucocyte-depleted blood transfusion: a follow-up study. Lancet. 2005;365:681–2. https://doi.org/10.1016/S0140-6736(05)17949-5.

    Article  PubMed  Google Scholar 

  20. Feng A, Zhang J, Lu X, Fang Q. Effect of blood transfusion on short- and long-term outcomes in oral squamous cell carcinoma patients undergoing free flap reconstruction. Front Surg. 2021;8:666768. https://doi.org/10.3389/fsurg.2021.666768.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ojima T, Iwahashi M, Nakamori M, Nakamura M, Naka T, Katsuda M, et al. Association of allogeneic blood transfusions and long-term survival of patients with gastric cancer after curative gastrectomy. J Gastrointest Surg. 2009;13:1821–30. https://doi.org/10.1007/s11605-009-0973-9.

    Article  PubMed  Google Scholar 

  22. Carson JL, Sieber F, Cook DR, Hoover DR, Noveck H, Chaitman BR, et al. Liberal versus restrictive blood transfusion strategy: 3-year survival and cause of death results from the FOCUS randomised controlled trial. Lancet. 2015;385:1183–9. https://doi.org/10.1016/S0140-6736(14)62286-8.

    Article  PubMed  Google Scholar 

  23. Ghosh S, Ahmed K, Hopkinson DN, Vaughan R. Pulmonary adenocarcinoma is associated with poor long-term survival after surgical resection. Effect of allogeneic blood transfusion. Cancer. 2004;101:2058–66. https://doi.org/10.1002/cncr.20590.

    Article  PubMed  Google Scholar 

  24. Mourad F, Cleve N, Nowak J, Wendt D, Sander A, Demircioglu E, et al. Long-term single-center outcomes of patients with chronic renal dialysis undergoing cardiac surgery. Ann Thorac Surg. 2020;109:1442–8. https://doi.org/10.1016/j.athoracsur.2019.08.042.

    Article  PubMed  Google Scholar 

  25. van Straten AHM, Firanescu C, Soliman Hamad MA, Tan MESH, ter Woorst JFJ, Martens EJ, et al. Peripheral vascular disease as a predictor of survival after coronary artery bypass grafting: comparison with a matched general population. Ann Thorac Surg. 2010;89:414–20. https://doi.org/10.1016/j.athoracsur.2009.11.036.

    Article  PubMed  Google Scholar 

  26. Johnston A, Mesana TG, Lee DS, Eddeen AB, Sun LY. Sex differences in long-term survival after major cardiac surgery: a population-based cohort study. J Am Heart Assoc. 2019;8:e013260. https://doi.org/10.1161/JAHA.119.013260.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ioannou GN, Rockey DC, Bryson CL, Weiss NS. Iron deficiency and gastrointestinal malignancy: a population-based cohort study. Am J Med. 2002;113:276–80. https://doi.org/10.1016/s0002-9343(02)01214-7.

    Article  CAS  PubMed  Google Scholar 

  28. Pengelly S, Fabricius M, McMenamin D, Wu E, Metzner M, Lewis SJ, et al. Attendance at iron deficiency anaemia clinic: audit of outcomes 5 years on. Colorectal Dis. 2013;15:423–7. https://doi.org/10.1111/codi.12040.

    Article  CAS  PubMed  Google Scholar 

  29. Hsing AW, Hansson LE, McLaughlin JK, Nyren O, Blot WJ, Ekbom A, et al. Pernicious anemia and subsequent cancer. A population-based cohort study. Cancer. 1993;71:745–50. https://doi.org/10.1002/1097-0142(19930201)71:3%3c745::aid-cncr2820710316%3e3.0.co;2-1.

    Article  CAS  PubMed  Google Scholar 

  30. Bianco V, Kilic A, Gleason TG, Aranda-Michel E, Habertheuer A, Wang Y, et al. Reoperative cardiac surgery is a risk factor for long-term mortality. Ann Thorac Surg. 2020;110:1235–42. https://doi.org/10.1016/j.athoracsur.2020.02.028.

    Article  PubMed  Google Scholar 

  31. Noyez L, van Eck FM. Long-term cardiac survival after reoperative coronary artery bypass grafting. Eur J Cardiothorac Surg. 2004;25:59–64. https://doi.org/10.1016/s1010-7940(03)00656-0.

    Article  PubMed  Google Scholar 

  32. Despotis G, Eby C, Lublin DM. A review of transfusion risks and optimal management of perioperative bleeding with cardiac surgery. Transfusion. 2008;48:2S-30S. https://doi.org/10.1111/j.1537-2995.2007.01573.x.

    Article  CAS  PubMed  Google Scholar 

  33. Cata JP, Wang H, Gottumukkala V, Reuben J, Sessler DI. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. Br J Anaesth. 2013;110:690–701. https://doi.org/10.1093/bja/aet068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maitta R. Transfusion-related immunomodulation. In: Immunologic concepts in transfusion medicine. Elsevier; 2020. p. 81–95. doi:https://doi.org/10.1016/B978-0-323-67509-3.00006-8.

  35. Koenig W. Low-grade inflammation modifies cardiovascular risk even at very low LDL-C levels: are we aiming for a dual target concept? Circulation. 2018;138:150–3. https://doi.org/10.1161/CIRCULATIONAHA.118.035107.

    Article  CAS  PubMed  Google Scholar 

  36. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32. https://doi.org/10.1038/s41591-019-0675-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spahn DR, Schoenrath F, Spahn GH, Seifert B, Stein P, Theusinger OM, et al. Effect of ultra-short-term treatment of patients with iron deficiency or anaemia undergoing cardiac surgery: a prospective randomised trial. Lancet. 2019;393:2201–12. https://doi.org/10.1016/S0140-6736(18)32555-8.

    Article  PubMed  Google Scholar 

  38. Martin K, Keller E, Gertler R, Tassani P, Wiesner G. Efficiency and safety of preoperative autologous blood donation in cardiac surgery: a matched-pair analysis in 432 patients. Eur J Cardiothorac Surg. 2010;37:1396–401. https://doi.org/10.1016/j.ejcts.2009.11.053.

    Article  PubMed  Google Scholar 

  39. Lewis CE, Hiratzka LF, Woods SE, Hendy MP, Engel AM. Autologous blood transfusion in elective cardiac valve operations. J Cardiac Surgery. 2005;20:513–8. https://doi.org/10.1111/j.1540-8191.2005.00137.x.

    Article  Google Scholar 

  40. Carless PA, Henry DA, Moxey AJ, O’Connell D, Brown T, Fergusson DA. Cell salvage for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 1996;2010:CD001888. https://doi.org/10.1002/14651858.CD001888.pub4.

    Article  Google Scholar 

  41. Puskas JD, Martin J, Cheng DCH, Benussi S, Bonatti JO, Diegeler A, et al. ISMICS consensus conference and statements of randomized controlled trials of off-pump versus conventional coronary artery bypass surgery. Innovations (Phila). 2015;10:219–29. https://doi.org/10.1097/IMI.0000000000000184.

    Article  PubMed  Google Scholar 

  42. Lamy A, Devereaux PJ, Prabhakaran D, Taggart DP, Hu S, Paolasso E, et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med. 2012;366:1489–97. https://doi.org/10.1056/NEJMoa1200388.

    Article  CAS  PubMed  Google Scholar 

  43. Falk V, Cheng DCH, Martin J, Diegeler A, Folliguet TA, Nifong LW, et al. Minimally invasive versus open mitral valve surgery: a consensus statement of the international society of minimally invasive coronary surgery (ISMICS) 2010. Innovations (Phila). 2011;6:66–76. https://doi.org/10.1097/IMI.0b013e318216be5c.

    Article  PubMed  Google Scholar 

  44. Sündermann SH, Sromicki J, Rodriguez Cetina Biefer H, Seifert B, Holubec T, Falk V, et al. Mitral valve surgery: right lateral minithoracotomy or sternotomy? A systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2014;148:1989-1995.e4. https://doi.org/10.1016/j.jtcvs.2014.01.046.

    Article  PubMed  Google Scholar 

  45. Phan K, Xie A, Di Eusanio M, Yan TD. A meta-analysis of minimally invasive versus conventional sternotomy for aortic valve replacement. Ann Thorac Surg. 2014;98:1499–511. https://doi.org/10.1016/j.athoracsur.2014.05.060.

    Article  PubMed  Google Scholar 

  46. Harling L, Warren OJ, Martin A, Kemp PR, Evans PC, Darzi A, et al. Do miniaturized extracorporeal circuits confer significant clinical benefit without compromising safety? A meta-analysis of randomized controlled trials. Asaio J. 2011;57:141–51. https://doi.org/10.1097/MAT.0b013e318209d63b.

    Article  PubMed  Google Scholar 

  47. Puskas JD, Gaudino M, Taggart DP. Experience is crucial in off-pump coronary artery bypass grafting. Circulation. 2019;139:1872–5. https://doi.org/10.1161/CIRCULATIONAHA.119.039584.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Woldendorp.

Ethics declarations

Conflict of interest

No disclosures or financial relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 147 KB)

Supplementary file2 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woldendorp, K., Manuel, L., Srivastava, A. et al. Perioperative transfusion and long-term mortality after cardiac surgery: a meta-analysis. Gen Thorac Cardiovasc Surg 71, 323–330 (2023). https://doi.org/10.1007/s11748-023-01923-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-023-01923-w

Keywords

Navigation