Skip to main content
Log in

Trans Fatty Acids Suppress TNF-α-Induced Inflammatory Gene Expression in Endothelial (HUVEC) and Hepatocellular Carcinoma (HepG2) Cells

  • Original Article
  • Published:
Lipids

Abstract

Trans fatty acids (TFA) intake has been linked to cardiovascular diseases and liver diseases; yet the effect of TFA on inflammation remains controversial. Accordingly, the objective of this paper was to determine the in vitro effects of TFA on inflammatory gene expression. Human umbilical vein endothelial cells (HUVEC) and human hepatocellular carcinoma (HepG2) cells were treated for 24 h with either trans-vaccenic acid (tVA), trans-palmitoleic acid (tPA) or elaidic acid (EA) at concentrations of 5–150 µM, or with a mixture of tVA and tPA (150/50 µM). All TFA were highly incorporated into cell membranes, as determined by gas chromatography, representing 15–20% of total fatty acids in HUVEC and 3–8% in HepG2 cells. Incorporation of EA, a common industrial TFA, increased the ratio of the stearoyl-CoA desaturase (SCD-1), a key enzyme involved in fatty acid metabolism. Ruminant TFA, including tVA, tPA and the mixture of tVA and tPA, significantly reduced the TNF-α-induced gene expression of TNF, VCAM-1 and SOD2 in HUVEC, as well as TNF and IL-8 in HepG2 cells. EA also decreased inflammatory gene expression in HUVEC, but not in HepG2 cells. The inhibition of peroxisome proliferator-activated receptor (PPAR)-γ did not influence the effects of TFA on gene expression. Overall, physiological and supraphysiological concentrations of TFA, especially tVA and tPA, prevented inflammatory gene expression in vitro. This effect is independent of PPAR-γ activation and may be due to an alteration of fatty acid metabolism in cell membranes caused by the high incorporation of TFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular disease

DMSO:

Dimethyl sulfoxide

EA:

Elaidic acid

eNOS:

Endothelial nitric oxide synthase

HepG2:

Liver hepatocellular cells

HUVEC:

Human umbilical vein endothelial cells

IL:

Interleukin

iTFA:

Industrial TFA

LC–MS/MS:

Liquid chromatography coupled with tandem mass spectrometry

NF-κB:

Nuclear factor κB

NO:

Nitric oxide

PG:

Prostaglandin

PPAR:

Peroxisome proliferator-activated receptor

rTFA:

Ruminant TFA

SOD:

Superoxide dismutase

TFA:

Trans fatty acids

TNF-α:

Tumor necrosis factor alpha

tPA:

trans-Palmitoleic acid

tVA:

trans-Vaccenic acid

VCAM-1:

Vascular cell adhesion molecule 1

References

  1. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801. doi:10.1172/JCI29069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rocha VZ, Libby P (2009) Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6:399–409. doi:10.1038/nrcardio.2009.55

    Article  CAS  PubMed  Google Scholar 

  3. Park EJ, Lee JH, Yu GY et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208. doi:10.1016/j.cell.2009.12.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Landmesser U, Hornig B, Drexler H (2004) Endothelial function: a critical determinant in atherosclerosis? Circulation 109:II27–II33. doi:10.1161/01.CIR.0000129501.88485.1f

    Article  PubMed  Google Scholar 

  5. Rajendran P, Rengarajan T, Thangavel J et al (2013) The vascular endothelium and human diseases. Int J Biol Sci 9:1057–1069. doi:10.7150/ijbs.7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun B, Karin M (2012) Obesity, inflammation, and liver cancer. J Hepatol 56:704–713. doi:10.1016/j.jhep.2011.09.020

    Article  CAS  PubMed  Google Scholar 

  7. Calder PC, Ahluwalia N, Albers R et al (2013) A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 109:S1–S34. doi:10.1017/S0007114512005119

    Article  PubMed  Google Scholar 

  8. Mozaffarian D, Katan MB, Ascherio A et al (2006) Trans fatty acids and cardiovascular disease. New Engl J Med 354:1601–1613

    Article  CAS  PubMed  Google Scholar 

  9. Månsson HL (2008) Fatty acids in bovine milk fat. Food Nutr Res 52:1–3. doi:10.3402/fnr.v52i0.1821

    Google Scholar 

  10. Bassett CMC, Edel AL, Patenaude AF et al (2010) Dietary vaccenic acid has antiatherogenic effects in LDLr−/− mice. J Nutr 140:18–24. doi:10.3945/jn.109.105163

    Article  CAS  PubMed  Google Scholar 

  11. Dhibi M, Brahmi F, Mnari A et al (2011) The intake of high fat diet with different trans fatty acid levels differentially induces oxidative stress and non alcoholic fatty liver disease (NAFLD) in rats. Nutr Metab (Lond) 8:65. doi:10.1186/1743-7075-8-65

    Article  CAS  Google Scholar 

  12. Tardy A-L, Morio B, Chardigny J-M, Malpuech-Brugère C (2011) Ruminant and industrial sources of trans-fat and cardiovascular and diabetic diseases. Nutr Res Rev 24:111–117. doi:10.1017/S0954422411000011

    Article  CAS  PubMed  Google Scholar 

  13. Harvey KA, Walker CL, Xu Z et al (2012) Trans fatty acids: induction of a pro-inflammatory phenotype in endothelial cells. Lipids 47:647–657. doi:10.1007/s11745-012-3681-2

    Article  CAS  PubMed  Google Scholar 

  14. Iwata NG, Pham M, Rizzo NO et al (2011) Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells. PLoS One 6:e29600. doi:10.1371/journal.pone.0029600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bryk D, Malecki M, Hajdukiewicz K, Sitkiewicz D (2011) Trans fatty acids induce a proinflammatory response in endothelial cells through ROS-dependent nuclear factor-κB activation. J Physiol Pharmacol 62:229–238

    CAS  PubMed  Google Scholar 

  16. Jaudszus A, Jahreis G, Schlörmann W et al (2012) Vaccenic acid-mediated reduction in cytokine production is independent of c9, t11-CLA in human peripheral blood mononuclear cells. Biochim Biophys Acta Mol Cell Biol Lipids 1821:1316–1322. doi:10.1016/j.bbalip.2012.06.010

    Article  CAS  Google Scholar 

  17. Livingstone KM, Givens DI, Jackson KG, Lovegrove JA (2014) Comparative effect of dairy fatty acids on cell adhesion molecules, nitric oxide and relative gene expression in healthy and diabetic human aortic endothelial cells. Atherosclerosis 234:65–72. doi:10.1016/j.atherosclerosis.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  18. Ricciotti E, Fitzgerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31:986–1000. doi:10.1161/ATVBAHA.110.207449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Da Silva MS, Rudkowska I (2015) Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol Nutr Food Res 59:1249–1263. doi:10.1002/mnfr.201400569

    Article  PubMed  Google Scholar 

  20. Vesper H, Kuiper H, Mirel L et al (2012) Levels of plasma trans-fatty Acids in non-hispanic white adults in the United States in 2000 and 2009. JAMA 307:562–563

    Article  PubMed  Google Scholar 

  21. Potenza MA, Addabbo F, Montagnani M (2009) Vascular actions of insulin with implications for endothelial dysfunction. Am J Physiol Endocrinol Metab 297:E568–E577. doi:10.1152/ajpendo.00297.2009

    Article  CAS  PubMed  Google Scholar 

  22. Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38. doi:10.1161/01.ATV.0000150649.39934.13

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  24. Larose J, Julien P, Greffard K et al (2014) F2-isoprostanes are correlated with trans fatty acids in the plasma of pregnant women. Prostaglandins Leukot Essent Fatty Acids 91:243–249. doi:10.1016/j.plefa.2014.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shaikh NA, Downar E (1981) Time course of changes in porcine myocardial phospholipid levels during ischemia. A reassessment of the lysolipid hypothesis. Circ Res 49:316–325. doi:10.1161/01.RES.49.2.316

    Article  CAS  PubMed  Google Scholar 

  26. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–120

    CAS  PubMed  Google Scholar 

  27. Da Silva MS, Julien P, Pérusse L et al (2015) Natural rumen-derived trans fatty acids are associated with metabolic markers of cardiac health. Lipids 50:873–882. doi:10.1007/s11745-015-4055-3

    Article  PubMed  Google Scholar 

  28. Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med 82:434–448. doi:10.1007/s00109-004-0555-y

    Article  CAS  PubMed  Google Scholar 

  29. Lee KS, Kim J, Kwak SN et al (2014) Functional role of NF-κB in expression of human endothelial nitric oxide synthase. Biochem Biophys Res Commun 448:101–107. doi:10.1016/j.bbrc.2014.04.079

    Article  CAS  PubMed  Google Scholar 

  30. Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759. doi:10.1038/nri912

    Article  CAS  PubMed  Google Scholar 

  31. Kliewer SA, Sundseth SS, Jones SA et al (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94:4318–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Jacome-Sosa MM, Ruth MR et al (2012) The intestinal bioavailability of vaccenic acid and activation of peroxisome proliferator-activated receptor-alpha and -gamma in a rodent model of dyslipidemia and the metabolic syndrome. Mol Nutr Food Res 56:1234–1246. doi:10.1002/mnfr.201100517

    Article  CAS  PubMed  Google Scholar 

  33. Turk HF, Chapkin RS (2013) Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot Essent Fat Acids 88:43–47. doi:10.1016/j.plefa.2012.03.008

    Article  CAS  Google Scholar 

  34. Ganguly R, LaVallee R, Maddaford TG et al (2016) Ruminant and industrial trans fatty acid uptake in the heart. J Nutr Biochem 31:60–66. doi:10.1016/j.jnutbio.2015.12.018

    Article  CAS  PubMed  Google Scholar 

  35. Woldseth B, Retterstøl K, Christophersen BO (1998) Monounsaturated trans fatty acids, elaidic acid and trans-vaccenic acid, metabolism and incorporation in phospholipid molecular species in hepatocytes. Scand J Clin Lab Invest 58:635–645. doi:10.1080/00365519850186067

    Article  CAS  PubMed  Google Scholar 

  36. Pan Y, Liu B, Deng Z et al (2017) Lipid rafts promote trans fatty acid-induced inflammation in human umbilical vein endothelial cells. Lipids 52:27–35. doi:10.1007/s11745-016-4213-2

    Article  CAS  PubMed  Google Scholar 

  37. Smit LA, Katan MB, Wanders AJ et al (2011) A High intake of trans fatty acids has little effect on markers of inflammation and oxidative stress in humans. J Nutr 141:1673–1678. doi:10.3945/jn.110.134668

    Article  CAS  PubMed  Google Scholar 

  38. Bendsen NT, Stender S, Szecsi PB et al (2011) Effect of industrially produced trans fat on markers of systemic inflammation: evidence from a randomized trial in women. J Lipid Res 52:1821–1828. doi:10.1194/jlr.M014738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lacroix E, Couillard C, Paquin P et al (2010) Effect of trans fatty acids from ruminants and industrial sources on plasma adhesion molecule concentrations in healthy men. FASEB J 24(724):16

    Google Scholar 

  40. Brouwer IA, Wanders AJ, Katan MB (2010) Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans–a quantitative review. PLoS One 5:e9434. doi:10.1371/journal.pone.0009434

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vendel Nielsen L, Krogager TP, Young C et al (2013) Effects of elaidic acid on lipid metabolism in hepg2 cells, investigated by an integrated approach of lipidomics, transcriptomics and proteomics. PLoS One 8:e74283. doi:10.1371/journal.pone.0074283

    Article  PubMed  PubMed Central  Google Scholar 

  42. Minville-Walz M, Gresti J, Pichon L et al (2012) Distinct regulation of stearoyl-CoA desaturase 1 gene expression by cis and trans C18:1 fatty acids in human aortic smooth muscle cells. Genes Nutr 7:209–216. doi:10.1007/s12263-011-0258-2

    Article  CAS  PubMed  Google Scholar 

  43. Krogager TP, Nielsen LV, Kahveci D et al (2015) Hepatocytes respond differently to major dietary trans fatty acid isomers, elaidic acid and trans-vaccenic acid. Proteome Sci 13:31. doi:10.1186/s12953-015-0084-3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alstrup KK, Brock B, Hermansen K (2004) Long-term exposure of INS-1 cells to cis and trans fatty acids influences insulin release and fatty acid oxidation differentially. Metabolism 53:1158–1165. doi:10.1016/j.metabol.2004.02.026

    Article  CAS  PubMed  Google Scholar 

  45. Du ZY, Degrace P, Gresti J et al (2010) Dissimilar properties of vaccenic versus elaidic acid in β-oxidation activities and gene regulation in rat liver cells. Lipids 45:581–591. doi:10.1007/s11745-010-3428-x

    Article  CAS  PubMed  Google Scholar 

  46. Jaudszus A, Kramer R, Pfeuffer M et al (2014) trans Palmitoleic acid arises endogenously from dietary vaccenic acid. Am J Clin Nutr 99:431–435. doi:10.3945/ajcn.113.076117

    Article  CAS  PubMed  Google Scholar 

  47. Kratz M, Marcovina S, Nelson JE et al (2014) Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not beta-cell function in humans. Am J Clin Nutr 99:1385–1396. doi:10.3945/ajcn.113.075457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mozaffarian D, Cao H, King IB et al (2010) trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S Adults. Ann Intern Med 153:790–799. doi:10.7326/0003-4819-153-12-201012210-00005

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nestel PJ, Straznicky N, Mellett NA et al (2014) Specific plasma lipid classes and phospholipid fatty acids indicative of dairy food consumption associate with insulin sensitivity. Am J Clin Nutr 99:46–53. doi:10.3945/ajcn.113.071712

    Article  CAS  PubMed  Google Scholar 

  50. Bordoni A, Danesi F, Dardevet D et al (2015) Dairy products and inflammation: a review of the clinical evidence. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2014.967385

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Line Berthiaume, who performed gas chromatographic analyses to determine fatty acid profiles, as well as Jessica Larose and Karine Greffard for the determination of PGE2 levels by LC–MS/MS. The authors also thank Mélanie Verreault for useful assistance with the HepG2 cell culture. This study was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). M.S.D.S. has received scholarships from the Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine (CREMOGH), the department of kinesiology of Université Laval and the CHU de Québec Foundation—Desjardins. I.R. holds a Junior 1 Research Scholar award from the Fonds de Recherche du Québec—Santé (FRQ-S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Rudkowska.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Silva, M.S., Julien, P., Bilodeau, JF. et al. Trans Fatty Acids Suppress TNF-α-Induced Inflammatory Gene Expression in Endothelial (HUVEC) and Hepatocellular Carcinoma (HepG2) Cells. Lipids 52, 315–325 (2017). https://doi.org/10.1007/s11745-017-4243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4243-4

Keywords

Navigation