Skip to main content
Log in

Lipid Rafts Promote trans Fatty Acid-Induced Inflammation in Human Umbilical Vein Endothelial Cells

  • Original Article
  • Published:
Lipids

Abstract

The effects of two fatty acids, oleic acid (OLA) and elaidic acid (ELA) on normal human umbilical vein endothelial cells (HUVEC) and non-rafts HUVEC were investigated in this study. The expression levels of inflammatory cytokines (ICAM-1, VCAM-1 and IL-6) were analyzed. Western blot was used to analyze the expression levels of inflammation-related proteins (NF-κB, ERK1/2) and toll-like receptors 4 (TLR4). The results showed that the levels of nuclear translocation of NF-κB p65 and phosphorylated ERK1/2 were significantly decreased only in non-lipid rafts cells pretreated with trans fatty acid (TFA). The expression of TLR4 in the ELA-treated normal cells was higher than that in non-lipid rafts HUVEC. When the lipid rafts was destroyed by methyl-β-cyclodextrin, the levels of nuclear translocation of NF-κB p65, phosphorylated ERK1/2 and TLR4 were decreased significantly. Therefore, lipid rafts may be involved in TFA induced-inflammation in HUVEC through blocking the inflammatory signal pathway. Lipid rafts might be a platform for specific receptors such as TLR4 for TFA to activate the pro-inflammation on cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified eagle medium

ELA:

Elaidic acid

EC:

Endothelial cell(s)

FBS:

Fetal bovine serum

HUVEC:

Human umbilical vein endothelial cell(s)

ICAM-1:

Intercellular adhesion molecule-1

IL-6:

Interleukin-6

MβCD:

Methyl-β-cyclodextrin

OLA:

Oleic acid

PBS:

Phosphate buffered saline

TFA:

trans Fatty acid(s)

TLR4:

Toll-like receptor 4

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. Mozaffarian D (2006) Trans fatty acids: effects on systemic inflammation and endothelial function. Atheroscler Suppl 7(2):29–32

    Article  CAS  PubMed  Google Scholar 

  2. Margaret C (2006) World-wide consumption of trans fatty acids. Atherosclerosis Suppl 7(2):1–4

    Article  Google Scholar 

  3. Mozaffarian D, Rimm EB, King IB, Richard LL et al (2004) Trans fatty acids and systemic inflammation in heart failure. Am J Clin Nutr 80:1521–1525

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Micha R, Mozaffarian D (2008) Trans fatty acids: Effects on cardiometabolic health and implications for policy. Prostaglandins Leukot Essent Fatty Acids 79:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caballero AE (2003) Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res 11:1278–1289

    Article  CAS  PubMed  Google Scholar 

  6. Harvey KA, Arnold T, Rasool T, Antalis C, Miller SJ et al (2008) Trans-fatty acids induce pro-inflammatory responses and endothelial cell dysfunction. Br J Nutr 99:723–731

    CAS  PubMed  Google Scholar 

  7. Lopez-Garcia E, Schulze MB, Meigs JB, Manson JoAnn E et al (2005) Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 135:562–566

    CAS  PubMed  Google Scholar 

  8. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684

    Article  CAS  PubMed  Google Scholar 

  9. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  10. Kai S, Derek T (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Google Scholar 

  11. Qiu B, Hu JN, Liu R, Fan YW et al (2012) Caspase pathway of elaidic acid (9t-C18:1)-induced apoptosis in human umbilical vein endothelial cells. Cell Biol Int 36:255–260

    Article  CAS  PubMed  Google Scholar 

  12. Eric MW, Fu K, Andrea H, Sun X, Wan FY (2015) Caspase-3 cleaved p65 fragment dampens NF-κB-mediated anti-apoptotic transcription by interfering with the p65/RPS3 interaction. FEBS Lett 589:3581–3587

    Article  Google Scholar 

  13. Lu Y, Zhu X, Liang GX, Cui RR, Liu Y, Wu SS, Liang QH, Liu GY, Jiang Y, Liao XB, Xie H, Zhou HD, Wu XP, Yuan LQ, Liao EY (2012) Apelin–APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-κB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acid 43(5):2125–2136

    Article  CAS  Google Scholar 

  14. Meng GQ, Liu YY, Lou CC, Yang H (2010) Emodin suppresses lipopolysaccharide-induced pro-inflammatory responses and NF-κB activation by disrupting lipid rafts in CD14-negative endothelial cells. Brit Pharmaco 161:1628–1644

    Article  CAS  Google Scholar 

  15. Chou YC, Su HM, Lai TW, Chyuan JH, Chao PM (2012) Cis-9, trans-11, trans-13-conjugated linolenic acid induces apoptosis and sustained ERK phosphorylation in 3T3-L1 preadipocytes. Nutrition 28:803–811

    Article  CAS  PubMed  Google Scholar 

  16. Grądzka I, Sochanowicz B, Brzóska K, Wójciuk G, Sommer S, Wojewódzka M, Gasińska A, Degen C, Jahreis G, Szumiel I (2013) cis-9, trans-11-Conjugated linoleic acid affects lipid raft composition and sensitizes human colorectal adenocarcinoma HT-29 cells to Xradiation. Biochim Biophys Acta 1830:2233–2242

    Article  PubMed  Google Scholar 

  17. Kimberly SG, Wu SY (2012) Lipid raft: A floating island of death or survival. Toxicol Appl Pharmacol 259:311–319

    Article  Google Scholar 

  18. Lemaire-Ewing S, Lagrost L, Néel D (2012) Lipid rafts: a signaling platform linking lipoprotein metabolism to atherogenesis. Atherosclerosis 221:303–310

    Article  CAS  PubMed  Google Scholar 

  19. Beutler B, Rehli M (2002) Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol 270:1–21

    CAS  Google Scholar 

  20. Nakahira K, Kim HP, GengXH Nakao A, Wang X, Murase N, Drain PF, Wang X, Sasidhar M, Nabel EG et al (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203:2377–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Scott WW, Myung-Ja K, Augustine MKC, Hong-Pyo K, Nakahira K, Daniel HH (2009) Fatty acids modulate toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. JBC 284:27384–27392

    Article  Google Scholar 

  22. Gustavo DP et al (2012) Intake of trans fatty acids during 1 gestation and lactation leads to hypothalamic inflammation via TLR4/NFκBp65 signaling in adult off spring. J N B 23:265–271

    Google Scholar 

  23. Matam VK, Jesse DA, Frederic AC, Thomas RZ, Andrew TG, Vijay G (2011) Loss of function mutation in toll-like receptor-4 does not offer protection against obesity and insulin resistance induced by a diet high in trans fat in mice. J Inflamm 8:2

    Article  Google Scholar 

  24. Julie BH, Xavier D, Andrey K, Jocelyne D, Emilie B, Fatiha Z, Yves M, Michel H, Florence T, Ferhat M (2014) Lipid emulsions differentially affect LPS-induced acute monocytes inflammation: in vitro effects on membrane remodeling and cell viability. Lipids 49:1091–1099

    Article  Google Scholar 

  25. Park KH, Kim JM, Cho KH (2014) Elaidic acid (EA) generates dysfunctional high-density lipoproteins and consumption of EA exacerbates hyperlipidemia and fatty liver change in zebrafish. Mol Nutr Food Res 58(7):1537–1545

    Article  CAS  PubMed  Google Scholar 

  26. Li XP, Luo T, Li J, Fan YW, Liu R, Hu JN, Liu XR, Deng ZY (2013) Linolelaidic acid induces a stronger proliferative effect on human umbilical vein smooth muscle cells compared to elaidic acid. Lipids 48:395–403

    Article  CAS  PubMed  Google Scholar 

  27. Richard CMS (2011) Culture of human endothelial cells from umbilical veins. Hum Cell Cult Protoc 806:265–274

    Google Scholar 

  28. Rao H, Ma LX, Xu TT, Li J, Deng ZY, Fan YW, Li HY (2014) Lipid rafts and Fas/FasL pathway may involve in elaidic acid-induced apoptosis of human umbilical vein endothelial cells. JAFC 62:798–807

    Article  CAS  Google Scholar 

  29. Sanchez SA et al (2011) Methyl-β-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. J Membrane Biol 241:1–10

    Article  CAS  Google Scholar 

  30. Linda JP, Han XL, Chung KN, Richard WG (2002) Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41:2075–2088

    Article  Google Scholar 

  31. Jaime M, Lindsay H, Matthew G, Derek T, Peter C, Anne JR (2006) Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveolae and F-actin-rich domains. Nat Cell Biol 8:113–123

    Article  Google Scholar 

  32. Daniel FL, Olivier M, Marie-Agnès D, Jürg T, Claude B (2003) Recruitment of TNF receptor 1 to lipid rafts is essential for TNFα-mediated NF-κB activation. Immunity 18(5):655–664

    Article  Google Scholar 

  33. Bi LP, Chiang JYL, Ding WX, Winston D, Benjamin R, Li TG (2013) Saturated fatty acids activate ERK signaling to downregulate hepatic sortilin 1 in obese and diabetic mice. J Lipid Res 54:2754–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oh HY, Lee EJ, Yoon S, Chung BH, Cho KS, Hong SJ (2007) Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate 67(10):1061–1067

    Article  CAS  PubMed  Google Scholar 

  35. Atsushi N, Takaharu T, Akiko K, Kazuko S, Hiromi T, Takahito S, Koji T, Mine H, Reiko K, Akihiko Y (2005) The sprouty-related protein, spred-1, localizes in a lipid raft/caveola and inhibits ERK activation in collaboration with caveolin-1. Genes Cells 10(9):887–895

    Article  Google Scholar 

  36. Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J et al (2007) Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet induced obesity. Circ Res 100:1589–1596

    Article  CAS  PubMed  Google Scholar 

  37. Lin Q, Li M, Fang D, Fang J, Su SB (2011) The essential roles of Toll-like receptor signaling pathways in sterile inflammatory diseases. Int Immunopharmacol 11:1422–1432

    Article  CAS  PubMed  Google Scholar 

  38. Kaori LH, Stefania LF, Nirupa RM, Wu DY, Alice HL (2015) EPA and DHA exposure alters the inflammatory response but not the surface expression of toll-like receptor 4 in macrophages. Lipids 50:121–129

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Natural Science Foundation of China (NO. 31060214 and NO. 31401485) and Natural Science Foundation of Jiangxi Province (NO. 20152ACB20001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Li.

Ethics declarations

Conflict of interest

The authors have declared that there are no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Liu, B., Deng, Z. et al. Lipid Rafts Promote trans Fatty Acid-Induced Inflammation in Human Umbilical Vein Endothelial Cells. Lipids 52, 27–35 (2017). https://doi.org/10.1007/s11745-016-4213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4213-2

Keywords

Navigation