Skip to main content
Log in

Thermal condition monitoring of a motorized milling spindle

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Growing power densities in the main spindle of machine tools caused by approaches to increase the productivity lead to deflections of the tool-center-point (TCP) and thus limit the achievable accuracy. In order to optimize the operating point of a spindle in the context of these contrary requirements, effective tools need to be developed. By modeling thermo-elastic effects using a FE approach, interactions of heat sources and sinks can be investigated deeply on the one hand and a model based correction of TCP deflections can be established on the other hand. For a practical use, short computing times as well as precise simulation results are core requirements. In the present paper, an online thermal simulation model is developed, parameterized and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feng J, Tang X, Li Y, Song B (2016) Thermal error modelling of the spindle using neurofuzzy systems. Math Probl Eng 1:1–10

    Google Scholar 

  2. Brecher C, Hirsch P, Weck M (2004) Compensation of thermo-elastic machine tool deformation based on control internal data. CIRP Ann 53(1):299–304

    Article  Google Scholar 

  3. Schmidt J, Minges R (1990) Thermische Verlagerungen an Werkzeugmaschinen. Teil 2. In: wt Werkstattstechnik, vol 80(10), pp 577–580

  4. Bossmanns B (1997) Thermo-mechanical modeling of motorized spindle systems for high-speed milling. Dissertation Purdue University

  5. Gebert K (1997) Ein Beitrag zur thermischen Modellbildung von schnelldrehenden Motorspindeln. Dissertation TU Darmstadt

  6. Rall K, Findeklee J (1998) Kompensation axialer Spindelverlagerungen beim Hochgeschwindigkeitsfräsen. Zeitschrift für wirtschaftlichen Fabrikbetrieb. 93(11):558–561

    Google Scholar 

  7. Bossmanns B, Tu JF (1999) A thermal model for high speed motorized spindles. Int J Mach Tools Manuf 39(9):1345–1366

    Article  Google Scholar 

  8. Li H, Shin YC (2004) Integrated dynamic thermo-mechanical modeling of high speed spindles, part 1. J Manuf Sci Eng 126(1):148

    Article  Google Scholar 

  9. Holkup T, Cao H, Kolář P, Altintas Y, Zelený J (2010) Thermo-mechanical model of spindles. CIRP Ann 59(1):365–368

    Article  Google Scholar 

  10. Uhlmann E, Hu J (2012) Thermal modelling of a high speed motor spindle. Procedia CIRP 1:313–318

    Article  Google Scholar 

  11. Jedrzejewski J, Kowal Z, Kwaśny W, Modrzycki W (2004) Hybrid model of high speed machining centre headstock. CIRP Ann 53(1):285–288

    Article  Google Scholar 

  12. Altintas Y, Cao Y (2005) Virtual design and optimization of machine tool spindles. CIRP Ann Manuf Technol 54(1):379–382

    Article  Google Scholar 

  13. Beitelschmidt M, Galant A, Großmann K, Kauschinger B (2015) Innovative simulation technology for real-time calculation of the thermo-elastic behaviour of machine tools in motion. Appl Mech Mater 794:363–370

    Article  Google Scholar 

  14. Groth C, Mueller G (2009) FEM für Praktiker Band 3: Temperaturfelder, 5th edn. expert verlag, Renningen

    Google Scholar 

  15. Klein B (1999) FEM: Grundlagen und Anwendungen der Finite-Elemente-Methode, 3rd edn. Vieweg, Braunschweig

    Book  MATH  Google Scholar 

  16. Schilders WHA, Van der Vorst HA, Rommes J (2008) Model order reduction—theory, research aspects and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Galant A, Beitelschmidt M, Großmann K (2016) Fast high-resolution FE-based simulation of thermo-elastic behaviour of machine tool structures. Procedia CIRP 46:627–630

    Article  Google Scholar 

  18. Arnoldi WE (1951) The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q Appl Math 9(1):17–29

    Article  MathSciNet  MATH  Google Scholar 

  19. Binder A (2017) Elektrische Maschinen und Antriebe. Springer, Berlin

    Book  Google Scholar 

  20. Hagen R (2014) Die Berechnung der Drehstromkäfigläufer-Asynchronmaschine mit Berücksichtigung der Zusatzverluste bei Netz- und Umrichterbetrieb. Dissertation Karlsruher Institut für Technologie

  21. Brecher C, Fey M, Falker J (2015) Untersuchung des Betriebsverhaltens eines neuartigen Loslagers für Hochgeschwindigkeitsanwendungen. In: 11. VDI-Fachtagung Gleit und Wälzlagerungen 2015

  22. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (2013) VDI-Wärmeatlas, 11th edn. Springer, Berlin

    Google Scholar 

  23. Bernhard F (2014) Handbuch der Technischen Temperaturmessung. Springer, Berlin

    Book  Google Scholar 

  24. Hak J (1956) Der Luftspalt-Wärmewiderstand einer elektrischen Maschine. Archiv für Elektrotechnik 42(5):257–272

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank the German Research Foundation (DFG) for financial support. The presented findings result from the subprojects B03 and A05 within the CRC/Transregio 96 “Thermo-Energetic Design of Machine Tools”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Neus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brecher, C., Ihlenfeldt, S., Neus, S. et al. Thermal condition monitoring of a motorized milling spindle. Prod. Eng. Res. Devel. 13, 539–546 (2019). https://doi.org/10.1007/s11740-019-00905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-019-00905-3

Keywords

Navigation