Skip to main content

Advertisement

Log in

In-situ investigation of the thermal reaction properties of multilayered aluminum–nickel nanofoils

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The reduction of the overall mass is a well-established strategy to improve the resource efficiency of vehicles. In terms of lightweight construction, the trend is to produce components consisting of dissimilar materials. Consequently, joining techniques are required that best fulfill the associated requirements. Joining based on reactive nanofoils represents an innovative approach to produce components in a multi-material design. However, nanofoils are not yet used in the industry due to the limited knowledge concerning the effective reaction characteristics during joining. Therefore, this study addresses the characterization of the thermal reaction properties of commercially available aluminum–nickel nanofoils. An experimental setup based on high-speed two-color infrared pyrometry was developed to ascertain the reaction temperature profile during the reaction time of ignited nanofoils. The layer composition of the samples and the ignition strategy were varied within the study. As a result, the effective reaction temperature profile and the duration of the reaction were determined in-situ with high temporal and spatial resolution for the first time. Furthermore, an analytic model was developed to accurately predict the reaction period with respect to the layer structures of the nanofoils. Finally, the sequence of developed intermediate aluminum-nickel phases during the reaction process was ascertained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McKinsey (2015) CO2-Regulierung sorgt bis 2030 fuer dreistelliges Milliardenwachstum im Leichtbau. https://www.mckinsey.de/co2-regulierung-sorgt-bis-2030-f%C3%BCr-dreistelliges-milliardenwachstum-im-leichtbau. Accessed 7 Mar 2017

  2. Klocke F (2009) Production technology in high-wage countries—from ideas of today to products of tomorrow. In: Schlick CM (ed) Ind Eng Ergon, 1st edn. Springer, Berlin, pp 13–30

    Google Scholar 

  3. Greitemann J, Christ EE, Matzat AC, Reinhart G (2014) Strategic evaluation of technological capabilities, competencies and core-competencies of manufacturing companies. Proc CIRP 19:57–62. doi:10.1016/j.procir.2014.05.017

    Article  Google Scholar 

  4. Henning F, Moeller E (2011) Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung. Hanser, Munich

    Book  Google Scholar 

  5. Wirth FX, Fuchs AN, Rinck P, Zaeh MF (2014) Friction press joining of laser-texturized aluminum with fiber reinforced thermoplastics. Adv Mater Res 966–977:536–545. doi:10.4028/www.scientific.net/AMR.966-967.536

    Article  Google Scholar 

  6. Heckert A, Zaeh MF (2015) Laser surface pre-treatment of aluminum for hybrid joints with glass fiber reinforced thermoplastics. J Laser Appl 27(29):005. doi:10.2351/1.4906380

    Google Scholar 

  7. Theodossiadis GD, Zaeh MF (2014) Fuegen von Metall und Kunststoff mittels reaktiver Nanofolien. In: DVS—Wissenschaftliche Tagung, 19 Nov 2014, Munich, Germany

  8. Kopp Alves A, Bergmann CP, Berutti FA (2013) Combustion synthesis. In: Kopp Alves A, Bergmann CP, Berutti FA (eds) Novel synthesis and characterization of nanostructured materials. Engineering materials. Springer, Heidelberg, pp 11–22

    Google Scholar 

  9. Rogachev AS, Mukasyan AS (2014) Combustion for material synthesis, 1st edn. Taylor and Francis, Hoboken

    Google Scholar 

  10. Weihs TP (2014) Fabrication and characterization of reactive multilayer films and foils. In: Barmak K, Coffrey K (eds) Metallic films for electronic, optical and magnetic applications, 1st edn. Woodhead Publishing, Cambridge, pp 160–243

    Chapter  Google Scholar 

  11. Adams DP (2015) Reactive multilayers fabricated by vapor deposition: a critical review. Thin Solid Films 576:98–128. doi:10.1016/j.tsf.2014.09.042

    Article  Google Scholar 

  12. Longtin R, Hack E, Neuenschwander J, Janczak-Rusch J (2011) Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology. Adv Mater 23:5812–5816. doi:10.1002/adma.201103275

    Article  Google Scholar 

  13. Theodossiadis GD, Zaeh MF (2016) Thermal joining of highly conductive bonds by means of reactive Al–Ni nanofoils. In: Thermec processing and manufacturing of advanced materials, Graz, Austria, 29 May–3 June 2016

  14. Gunduz IE, Fadenberger K, Kokonou M, Rebholz C, Doumanidis CC (2008) Investigations on the self propagating reactions of nickel and aluminum multilayered foils. Appl Phys Lett 93(134):101. doi:10.1063/1.2994670

    Google Scholar 

  15. Vol’pe BM, Evstigneev VV, Milyukova Saigutin GV (1996) Study of structure formation of products in SHS nickel–aluminum-alloying component systems. Combust Explos Shock Waves 32:165–172. doi:10.1007/BF02097086

    Article  Google Scholar 

  16. Knepper R, Snyder MR, Fritz G, Fisher K, Knio OM, Weihs TP (2009) Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers. J Appl Phys 105(83):504. doi:10.1063/1.3087490

    Google Scholar 

  17. Barmak K, Michaelsen C, Lucadamo G (1997) Reactive phase formation in sputter-deposited Ni/Al multilayer thin films. J Mater Res 12:133–146. doi:10.1557/JMR.1997.0021

    Article  Google Scholar 

  18. Zhu P, Li J, Liu CT (2003) Adiabatic temperature of combustion synthesis of Al–Ni systems. Mater Sci Eng A 357:248–257. doi:10.1016/S0921-5093(03)00249-1

    Article  Google Scholar 

  19. Fritz GM, Grzyb JA, Knio OM, Grapes MD, Weihs TP (2015) Characterizing solid-state ignition of runaway chemical reactions in Ni–Al nanoscale multilayers under uniform heating. J Appl Phys 118(13):135101. doi:10.1063/1.4931666

    Article  Google Scholar 

  20. Ruehl JM (2015) Prozessmodellierung von Reaktiv-Multischicht-Systemen (RMS). Dissertation, Technische Universität Dresden, Germany

  21. Fadenberger K, Gunduz IE, Tsotsos C, Kokonou M, Gravani S, Brandstetter S, Bergamaschi A, Schmitt B, Mayrhofer PH, Doumanidis CC, Rebholz C (2010) In situ observation of rapid reactions in nanoscale Ni–Al multilayer foils using synchrotron radiation. Appl Phys Lett 97(144):101. doi:10.1063/1.3485673

    Google Scholar 

  22. Bernhard F (2014) Handbuch der Technischen Temperaturmessung, 2nd edn. Springer, Berlin

    Google Scholar 

  23. Braunreuther S, Hammerstingl V, Schweier M, Theodossiadis G, Reinhart G, Zaeh MF (2015) Welding joint detection by calibrated mosaicking with laser scanner systems. CIRP J Manuf Sci Technol 10:16–23. doi:10.1016/j.cirpj.2015.03.002

    Article  Google Scholar 

  24. Pretorius R, de Reus R, Vredenberg AM, Saris FW (1990) Use of the effective heat of formation rule for predicting phase formation sequence in Al–Ni systems. Mater Lett 9:494–499. doi:10.1016/0167-577X(90)90094-3

    Article  Google Scholar 

  25. Nash P, Kleppa O (2001) Composition dependence of the enthalpies of formation of NiAl. J Alloys Compd 321:228–231. doi:10.1016/S0925-8388(01)00952-5

    Article  Google Scholar 

  26. Anselmi-Tamburini U, Munir ZA (1989) The propagation of a solid-state combustion wave in Ni–Al foils. J Appl Phys 66:5039. doi:10.1063/1.343777

    Article  Google Scholar 

  27. Gavens AJ, van Heerden D, Mann AB, Reiss ME, Weihs TP (2000) Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J Appl Phys 87:1255–1263. doi:10.1063/1.372005

    Article  Google Scholar 

  28. Kim JS, LaGrange T, Reed BW, Knepper R, Weihs TP, Browning ND, Campbell GH (2011) Direct characterization of phase transformations and morphologies in moving reaction zones in Al/Ni nanolaminates using dynamic transmission electron microscopy. Acta Mater 59:3571–3580. doi:10.1016/j.actamat.2011.02.030

    Article  Google Scholar 

  29. Zhu P, Li J, Liu C (2002) Reaction mechanism of combustion synthesis of NiAl. Mater Sci Eng A 329–331:57–68. doi:10.1016/S0921-5093(01)01549-0

    Article  Google Scholar 

  30. Rogachev AS, Vadchenko SG, Baras F, Politano O, Rouvimov S, Sachkova NV, Mukasyan AS (2014) Structure evolution and reaction mechanism in the Ni/Al reactive multilayer nanofoils. Acta Mater 66:86–96. doi:10.1016/j.actamat.2013.11.045

    Article  Google Scholar 

  31. Nash P (1991) Phase diagrams of binary nickel alloys. ASM International, Materials Park

    Google Scholar 

  32. Qiu X, Wang J (2007) Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils. Scr Mater 56(12):1055–1058. doi:10.1016/j.scriptamat.2007.02.032

    Article  Google Scholar 

  33. Swaminathan P, Grapes MD, Woll K, Barron SC, LaVan DA, Weihs TP (2013) Studying exothermic reactions in the Ni–Al system at rapid heating rates using a nanocalorimeter. J Appl Phys 113(143):509. doi:10.1063/1.4799628

    Google Scholar 

  34. Kalpakjian S, Schmid SR, Werner E (2011) Werkstofftechnik: Herstellung Verarbeitung Fertigung, 5th edn. Pearson Deutschland, Munich

    Google Scholar 

  35. Edelstein AS, Everett RK, Richardson GY, Qadri SB, Altman EI, Foley JC, Perepezko JH (1994) Intermetallic phase formation during annealing of Al/Ni multilayers. J Appl Phys 76:7850. doi:10.1063/1.357893

    Article  Google Scholar 

  36. Takahashi F, Greer AL (1998) Interfacial reactions in Al/Ni multilayers. Mater Sci Forum 269–272:601–606. doi:10.4028/www.scientific.net/MSF.269-272.601

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the German Federal Ministry of Education and Research (BMBF) for funding this work as part of the research project “eProduction” (Project Number 16N12033). A special thanks goes to Mr. Sarfels at Flir Systems GmbH and to Mr. Halbritter at TOPA GmbH for providing the camera “Flir SC7500”. A particular thanks goes to Mr. Lex and to Mr. Kriz at Sensortherm GmbH for placing the calibration source “CS 1500” at our disposal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios D. Theodossiadis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theodossiadis, G.D., Zaeh, M.F. In-situ investigation of the thermal reaction properties of multilayered aluminum–nickel nanofoils. Prod. Eng. Res. Devel. 11, 373–381 (2017). https://doi.org/10.1007/s11740-017-0738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0738-3

Keywords

Navigation