Skip to main content

Abstract

The pursuit of solid rocket motor and hybrid rocket engine performance enhancements is pushing toward the research of novel energetic materials replacing the conventional micron-sized aluminum. Nanotechnology opened the way to new concepts, introducing very promising ingredients like nano-sized aluminum powders. Their effectiveness in increasing energetic system performance has been already proven at lab-scale level. However, the high cost, the dispersion difficulties, and the increased handling risk hinder a widespread application of nanomaterials. On the other hand, activation techniques offer the possibility of micron-sized additives reactivity enhancement while maintaining high safety levels and reduced costs. This work deals with the design, the production, and the characterization of mechanically activated ingredients for solid propellants and hybrid rocket fuels. General guidelines for the powder processing implementation are critically discussed. Additives are characterized in the pre-burning phase, and their effects on the ballistic response of solid propellants and hybrid fuels are investigated. Activated powders improved hybrid fuel regression rate and reduced the size of the condensed combustion products of solid propellants, confirming their suitability for the micron-sized aluminum replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soler L, Macanás J, Muñoz M, Casado J (2007) Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications. J Power Sour 169(1):144–149. https://doi.org/10.1016/j.jpowsour.2007.01.080

    Article  CAS  Google Scholar 

  2. Sutton GP, Biblarz O, Rocket propulsion elements, 8th ed., Wiley, New Jersey, 2010, Chaps. 13, 16. ISBN: 978-0-470-08024-5

    Google Scholar 

  3. Paravan C, Verga A, Maggi F, Galfetti L (2019) Accelerated ageing of micron- and nano-sized aluminum powders: metal content, composition and non-isothermal oxidation reactivity. Acta Astronautica 158:397–406. ISBN: 978-0-470-08024-5

    Google Scholar 

  4. Reydellet D (1986) Performance of rocket motors with metallized propellants. AGARD AR-230, 1986. ISBN: 92–835-1534-X

    Google Scholar 

  5. DeLuca LT, Paravan C, Reina A, Marchesi E, Maggi F, Bandera A, Colombo G, Kosowski B (2010) Aggregation and incipient agglomeration in metallized solid propellants and solid fuels for rocket propulsion. In: 46th AIAA/ASME/SAE/ASEE joint propulsion conference, AIAA Paper No. 2010–6752

    Google Scholar 

  6. Maggi F, Dossi S, Paravan C, Carlotti S, Galfetti L (2017) Role of pressure and aluminum size in solid propellant CCP generation. In: 53rd AIAA/ASME/SAE/ASEE joint propulsion conference, AIAA Paper No. 2017–5076

    Google Scholar 

  7. DeLuca LT, Galfetti L, Colombo G, Maggi F, Paravan C, Reina A, Dossi S, Fassina M, Sossi A (2014) Characterization and combustion of aluminum nanopowders in energetic systems. In: Gromov AA, Teipel U (eds.) Metal nanopowders: production, characterization, and energetic applications, Wiley-VHC, Weinheim, Germany, 2014, pp 301–410. https://doi.org/10.1002/9783527680696.ch12

  8. Sossi A, Duranti E, Paravan C, DeLuca LT, Vorozhtsov AB, Gromov AA, Pautova YI, Lerner MI, Rodkevich NG (2013) Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and fluorohydrocarbons. Appl Surf Sci 271:337–343. https://doi.org/10.1016/j.apsusc.2013.01.197

    Article  CAS  Google Scholar 

  9. Vignes A, Muñoz F, Bouillard J, Dufaud O, Perrin L, Laurent A, Thomas D (2012) Risk assessment of the ignitability and explosivity of aluminum nanopowders. Process Saf Environ Prot 90(4):304–310. https://doi.org/10.1016/j.psep.2011.09.008

    Article  CAS  Google Scholar 

  10. Bouillard J, Vignes A, Dufaud O, Perrin l, Thomas D (2010) Ignition and explosion risks of nanopowders. J Haz Mater 181(1–3):873–880. https://doi.org/10.1016/j.jhazmat.2010.05.094

  11. Braydich-Stolle LK, Speshock JL, Castle A, Smith M, Murdok RC, Hussain SM (2010) Nanosized aluminum altered immune function. ACS Nano 4(7):3661–3670. https://doi.org/10.1021/nn9016789

    Article  CAS  Google Scholar 

  12. Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A (2010) Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl 106:359–364. https://doi.org/10.1007/978-3-211-98811-4_65

    Article  Google Scholar 

  13. Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR172. https://doi.org/10.1116/1.2815690

  14. Erişken C, Göçmez Yilmarzer Ü, Pekel F, Özkar S (1998) Modeling and rheology of HTPB based composite solid propellants. Polymer Compos 19,(4):463–472. https://doi.org/10.1002/pc.10121

  15. Mary B, Dubois C, Carreau PJ, Brousseau P (2006) Rheological properties of suspensions of polyethylene-coated aluminum nanoparticles. Rheol Acta 45(5):561–573. https://doi.org/10.1007/s00397-006-0095-1

    Article  CAS  Google Scholar 

  16. Teipel U, Förter-Barth U, Rheology of nano-scale aluminum suspensions. Propellants Explosives Pyrotechn 26(6):268–272. https://doi.org/10.1002/1521-4087(200112)26:6%3c268:AID-PREP268%3e3.0.CO;2-L

  17. Paravan C, Maggi F, Dossi S, Marra G, Colombo G, Galfetti L (2016) Pre-burning characterization of nano-sized aluminum in condensed energetic systems. In: Zarko VE, Gromov AA (eds) Energetic Nanomaterials, Elsevier, pp 341–368. https://doi.org/10.1016/b978-0-12-802710-3.00013-1

  18. Gridelet L, Delbecq P, Hervé L, Boissolle P, Fleury D, Kowal S, Fayet G (2015) Proposal of a new risk assessment method for the handling of powders and nanomaterials. Ind Health 53(1):56–68. https://doi.org/10.2486/indhealth.2014-0046

    Article  CAS  Google Scholar 

  19. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184. https://doi.org/10.1016/s0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  20. Sippel TR, Son SF, Groven LJ (2013) Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation. Propellants Explos Pyrotech 38(2):286–295. https://doi.org/10.1002/prep.201200102

    Article  CAS  Google Scholar 

  21. Rosenband V, Gany A (2011) High-reactivity aluminum powders. Int J Energ Mater Chem Propul 10(1):19–32. https://doi.org/10.1615/int.J.EnergeticMaterialsChem.Prop.,2012001355

    Article  Google Scholar 

  22. Hama A, Gany A, Palovuori K (2006) Combustion of activated aluminum. Combust Flame 145(3):464–480. https://doi.org/10.1016/j.combustflame.2006.01.003

    Article  CAS  Google Scholar 

  23. Zhang DL (2004) Processing of advanced materials using mechanical milling. Progress Mater Sci 49(3–4):537–560. https://doi.org/10.1016/s0079-6425(03)00034-3

    Article  CAS  Google Scholar 

  24. Dossi S (2014) Mechanically activated aluminum fuels for high performance solid rocket propellants. PhD Dissertation, Dept. of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy

    Google Scholar 

  25. Benjamin JS (1970) Dispersion streghten super alloys by mechanical alloying. Metall Trans 1(10):2943–2951. https://doi.org/10.1007/bf03037835

    Article  CAS  Google Scholar 

  26. Koch CC, Whittenberger JD (1996) Mechanical milling/alloying of intermetallics. Intermetallics 4(5):339–355. https://doi.org/10.1016/0966-9795(96)00001-5

    Article  CAS  Google Scholar 

  27. Glassman I, Sawyer RF, The performance of chemical propellants. AGARD AG-129, 1970. ISBN: 0–85102-018-6

    Google Scholar 

  28. Gordon S, McBride BS (1994) Computer program for calculation of complex chemical equilibrium compositions and applications. NASA RP-1311

    Google Scholar 

  29. Sippel TR, Son SF, Groven LJ (2014) Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust Flame 161(1):311–321. https://doi.org/10.1016/j.combustflame.2013.08.009

    Article  CAS  Google Scholar 

  30. Biron M (2007) Thermoplastics and thermoplastics composites, 1st ed., Elsevier Ltd., UK, 2007, Chap. 4. ISBN: 978 -1-85617-478-7

    Google Scholar 

  31. Wohlslagel J, Di Pasquale LC, Vernot EH (1975) Toxicity of solid rocket motor exhaust—effects of HCl, HF and alumina on rodents. In: Proceedings of the 6th annual conference on environmental toxicology, AMRL-TR-75-125, USAF

    Google Scholar 

  32. Lee CH, Guo YL, Tsai PJ, Chang HY, Chen CR, Chen CW, Hsiue T-R (1997) Fatal acute pulmonary oedema after inhalation of fumes from polytetrafluoroethylene (PTFE). Eur Respir J 10(6):1408–1411. https://doi.org/10.1183/09031936.97.10061408

    Article  CAS  Google Scholar 

  33. Tsuchida T, Hasegawa T (1996) TG-DTA-MS study of self-ignition in self-propagating high-temperature synthesis of mechanically activated Al-C powder mixtures. Thermochim Acta 276:123–129. https://doi.org/10.1016/0040-6031(95)02763-7

    Article  CAS  Google Scholar 

  34. Gupta GK (2003) Chemical metallurgy, principles and practice, 1st ed., WILEY-VHC, Germany, 2003, Chap. 3. ISBN: 978-3-527-60525-5

    Google Scholar 

  35. Lison D, De Boeck M, Kirsch-Volders M (2001) Update on the genotoxicity of cobalt compounds. Occup Environ Med 58(10):619–625. https://doi.org/10.1136/oem.58.10.619

    Article  CAS  Google Scholar 

  36. Penazzo S (2014) Innovative aluminum-based oxidizer/metal complexes for regression rate enhancement. M.Sc. Dissertation, Dept. of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy

    Google Scholar 

  37. Paravan C, Manzoni M, Rambaldi G, De Luca LT (2013) Analysis of quasi-steady and transient burning of hybrid fuels in a laboratory scale burner by optical technique. Int J Energ Mater Chem Propul 12(5):385–410. https://doi.org/10.1615/int.J.EnergeticMaterialsChem.Prop.,2013005756

    Article  CAS  Google Scholar 

  38. Paravan C (2012) Ballistic of innovative solid fuel formulations for hybrid rocket engines. PhD Dissertation, Dept. of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy

    Google Scholar 

  39. Risha GA, Evans BJ, Kuo KK (2007) Metals, energetic additives, and special binders usded in solid fuels for hybrid rockets. In: Chiaverini MJ, Kuo KK (eds) Fundamentals of hybrid rockets combustion and propulsion, progress in aeronautics and astronautics, AIAA, Washington, DC, 2007, Chapter 10, pp 413–456. ISBN: 978-1-56347-703-4

    Google Scholar 

  40. Paravan C, Stocco M, Penazzo S, Myzyri J, De Luca LT, Galfetti L (2019) Effects of aluminum composites on the regression rates of solid fuels. In: Bonnal C, Calabro M, Galfetti L, Maggi F (eds) Progress in propulsion physics, Vol 11, Eucass Book Series, pp 65–90. https://doi.org/10.1051/eucass/201911065

  41. Burnside CH (1975) Role of ferric oxide surface area in propellant burn rate enhancement. Air Force, Rept. ADA013855

    Google Scholar 

  42. Reina A (2013) Nano-metal fuels for hybrid and solid propulsion. PhD Dissertation, Dept. of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy

    Google Scholar 

  43. De Luca LT, Marchesi E, Spreafico M, Reina A, Maggi F, Rossettini L, Bandera A, Colombo G, Kosowski BM (2010) Aggregation versus agglomeration in metallized solid rocket propellants. Int J Energ Mater Chem Propul 9(1):91–105. https://doi.org/10.1615/int.J.EnergeticMaterialsChem.Prop.,v9.i1.60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Dossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dossi, S., Paravan, C., Maggi, F., Galfetti, L. (2020). Enhancing Micrometric Aluminum Reactivity by Mechanical Activation. In: Pang, W., DeLuca, L., Gromov, A., Cumming, A. (eds) Innovative Energetic Materials: Properties, Combustion Performance and Application. Springer, Singapore. https://doi.org/10.1007/978-981-15-4831-4_2

Download citation

Publish with us

Policies and ethics