Skip to main content
Log in

Species-specific responses of spectral reflectance and the photosynthetic characteristics in two selected Antarctic mosses to thallus desiccation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Mosses are considered highly resistant against desiccation because they maintain photosynthetic activity even when severely dehydrated. In our study, we investigated changes in the photochemical processes of photosynthesis, as well as the spectral reflectance parameters during controlled rehydration and desiccation in two Antarctic species, i.e. Brachythecium austro-glareosum and Bryum pseudotriquetrum. Changes in primary photochemical processes were evaluated by chlorophyll fluorescence, i.e. slow Kautsky kinetics supplemented with saturation light pulses. In desiccating thalli, an effective quantum yield of photosynthetic processes in PS II (ΦPSII) remained unchanged within low to moderate desiccation, i.e. with a relative water content (RWC) decrease from fully wet (100%) to semidry (30%). Below 20% RWC, ΦPSII showed a species-specific decline, as well as steady-state fluorescence (FS). A half-decrease in ΦPSII was reached at an RWC of 12.6% (B. austro-glareosum) and 9.8% (B. pseudotriquetrum). Rapid light–response curves showed a strong limitation of photosynthetic electron transport (ETR) at an RWC below 20% in both species. The ΦPSII and ETR data suggested that both species were desiccation-tolerant and well adapted to harsh Antarctic environments. However, B. pseudotriquetrum was more resistant in a state of severe dehydration (RWC below 20%) than B. austro-glareosum. Spectral reflectance indices responded to desiccation either (a) similarly in the two species (normalised difference vegetation index [NDVI]), (b) with similar trends but different values (modified chlorophyll absorption in reflectance index [MCARI] and greenness index [GI]) and (c) species-specifically (photochemical reflectance index [PRI]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ChlF:

Chlorophyll fluorescence

KK:

Kautsky kinetics of chlorophyll fluorescence

FV/FM :

Potential yield of photochemical photosynthetic processes in PS II

ΦPSII:

Effective yield of photochemical photosynthetic processes in PS II

NPQ:

Non-photochemical quenching of chlorophyll fluorescence

FS :

Steady-state fluorescence

RLCs:

Rapid light curves

ETR:

Electron transport rate

RWC:

Relative water content

WP:

Water potential

NDVI:

Normalised difference vegetation index

PRI:

Photochemical reflectance index

PSII:

Photosystem II

MCARI:

Modified chlorophyll absorption in reflectance index

GI:

Greenness index

CARI:

Carotenoid index

CIred-edge :

Red-edge chlorophyll index

CCRI:

Carotenoid/chlorophyll ratio index

Pq:

Phaeophytisation index

References

  • Alboresi A, Gerotto C, Cazzaniga S, Bassi R, Morosinotto T (2011) A red-shifted antenna protein associated with photosystem II in Physcomitrella patens. J Biol Chem 286:28978–28987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 15:5–17

    Article  Google Scholar 

  • Arróniz-Crespo M, Gwynn-Jones D, Callaghan TV, Núñez-Olivera E, Martínez-Abaigar J, Horton P, Phoenix GK (2011) Impacts of long-term enhanced UV-B radiation on bryophytes in two sub-Arctic heathland sites of contrasting water availability. Ann Bot 108:557–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Barcikowski A, Loro P (1999) Changes in chlorophyll content throughout the year in selected species of mosses on King George Island, South Shetland Islands, maritime Antarctic. Pol Polar Res 20(3):291–299

    Google Scholar 

  • Barták M, Trnková K, Hansen ES, Hazdrová J, Skácelová K, Hájek J, Forbelská M (2015a) Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea. Biol Plantarum 59(2):357–365

    Article  Google Scholar 

  • Barták M, Váczi P, Stachoň Z, Kubešová S (2015b) Vegetation mapping of moss-dominated areas of northern part of James Ross Island (Antarctica) and a suggestion of protective measures. Czech Polar Rep 5:75–87

    Article  Google Scholar 

  • Barták M, Hájek J, Amarillo AC, Hazdrová J, Carreras H (2016) Changes in spectral reflectance of selected Antarctic and South American lichens caused by dehydration and artificially-induced absence of secondary compounds. Czech Polar Rep 6:221–230

    Article  Google Scholar 

  • Barták M, Hájek J, Morkusová J, Skácelová K, Košuthová A (2018) Dehydration-induced changes in spectral reflectance indices and chlorophyll fluorescence of Antarctic lichens with different thallus color, and intrathalline photobiont. Acta Physiol Plant 40:177

    Article  Google Scholar 

  • Bartošková H, Nauš J, Výkruta M (1999) The arrangement of chloroplasts in cells influences the reabsorption of chlorophyll fluorescence emission. The effect of desiccation on the chlorophyll fluorescence spectra of Rhizomnium punctatum leaves. Photosynth Res 62:251–260

    Article  Google Scholar 

  • Baxter R, Emes MJ, Lee JA (1991) Short-term effects of bisulphite on pollution-tolerant and pollution-sensitive populations of Sphagnum cuspidatum Ehrh. (ex. Hoffm.). New Phytol 118(3):425–431

    Article  CAS  Google Scholar 

  • Bewley JD (1979) Physiological aspects of desiccation tolerance. Annu Rev Plant Physiol 30:195–238

    Article  CAS  Google Scholar 

  • Bewley JD, Krochko JE (1982) Desiccation tolerance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12B. Physiological Ecology II. Berlin, Springer-Verlag, pp 325–378

    Google Scholar 

  • Bohuslavová O, Macek P, Redčenko O, Láska K, Nedbalová EJ (2018) Dispersal of lichens along a successional gradient after deglaciation of volcanic mesas on northern James Ross Island, Antarctic Peninsula. Polar Biol 41:2221–2232

    Article  Google Scholar 

  • Calatayud A, Deltoro VI, Barreno E, Del Valle-Tascon S (1997) Changes in in vivo chlorophyll fluorescence emission during desiccation and suggestion of zeaxanthin associated photoprotection. Physiol Plant 101:93–102

    Article  CAS  Google Scholar 

  • Charron AJ, Quatrano RS (2009) Between a rock and a dry place: the water-stressed moss. Mol Plant 2(3):478–486

    Article  CAS  PubMed  Google Scholar 

  • Chobot V, Kubicová L, Nabbout S, Jahodár L, Hadacek F (2008) Evaluation of antioxidant activity of some common mosses. Verlag Der Zeitschrift Für Naturforschung, Tübingen Z Naturforsch C J Biosci 63(7–8):476–482

    Article  CAS  Google Scholar 

  • Clarke LJ, Robinson SA (2008) Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the antarctic moss, Ceratodon Purpureus. New Phytol 179:776–783

    Article  PubMed  Google Scholar 

  • Cruz de Carvalho RC, Bernardes da Silva A, Soares R, Almeida AM, Coelho AV, Marques da Silva J, Branquinho C (2014) Differential proteomics of dehydration and rehydration in bryophytes: evidence towards a common desiccation tolerance mechanism. Plant Cell Environ 37:1499–1515

    Article  CAS  PubMed  Google Scholar 

  • Csintalan Z, Proctor MCF, Tuba Z (1999) Chlorophyll Fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook. and Tayl. and Grimmia pulvinata (Hedw.) Sm. Ann Bot 84:235–244

    Article  CAS  Google Scholar 

  • Daughtry CST, Walthall CL, Kim MS, Brown DE, Colstoun E, Mcmurtrey JE (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74:229–239

    Article  Google Scholar 

  • Davey MC (1997) Effects of short-term dehydration and rehydration on photosynthesis and respiration by Antarctic bryophytes. Environ Exp Bot 37(2–3):187–198

    Article  CAS  Google Scholar 

  • Deltoro VI, Calatayud A, Gimeno WC, Barreno E (1998a) Water relations, chlorophyll fluorescence, and membrane permeability during desiccation in bryophytes from xeric, mesic, and hydric environments. Can J Bot 76:1923–1929

    Google Scholar 

  • Deltoro VI, Calatayud A, Gimeno C, Abadia A, Barreno E (1998b) Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta 207:224–228

    Article  CAS  Google Scholar 

  • Deltoro VI, Morales ÁCF, Abadía A, Barreno E (1999) Changes in net photosynthesis, chlorophyll fluorescence and xanthophyll cycle interconversions during freeze-thaw cycles in the Mediterranean moss Leucodon sciuroides. Oecologia 120:499–505

    Article  PubMed  Google Scholar 

  • Erudel T, Fabre S, Houet T, Mazier F, Briottet X (2017) Criteria comparison for classifying peatland vegetation types using in situ hyperspectral measurements. Remote Sens 9:748

    Article  Google Scholar 

  • Fernández-Marín B, Míguez F, Becerril JM, García-Plazaola JI (2011) Dehydration-mediated activation of the xanthophyll cycle in darkness: is it related to desiccation tolerance? Planta 234:579–588

    Article  PubMed  Google Scholar 

  • Fernández-Marín B, Kranner I, Sebastián MS, Artetxe U, Laza JM, Vilas JL, Pritchard HW, Nadajaran J, Míguez F, Becerril JM, García-Plazaola JI (2013) Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. J Exp Bot 64:3033–3043

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamon JA, Field CB, Bilger W, Björkman O, Fredeen A, Peñuelas J (1990) Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85:1–7

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Zhang D, Li X, Yang H, Zhang Y, Wood AJ (2015) De novo transcriptome characterization and gene expression profiling of the desiccation tolerant moss Bryum argenteum following rehydration BMC. Genomics 16:416

    PubMed  PubMed Central  Google Scholar 

  • Gerotto C, Alboresi A, Giacometti GM, Bassi R, Morosinotto T (2012) Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens. New Phytol 196:763–773

    Article  CAS  PubMed  Google Scholar 

  • Gitelson AA, Vina A, Ciganda V, Rundquist DC, Arkebauer TJ (2005) Remote estimation of canopy chlorophyll content in crops. Geophy Res Lett 32(8)

  • Giudici GNM, Hájek J, Barták M, Kubešová S (2018) Comparative research of photosynthetic processes in selected poikilohydric organisms from Mediterranean and Central-European alpine habitats. Czech Polar Rep 8(2):286–298

    Article  Google Scholar 

  • Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge U, Beck E, Bartels D (eds) Plant Desiccation Tolerance, Ecological Studies 215, Part 2. Springer-Verlag, Berlin, pp 89–120

    Chapter  Google Scholar 

  • Griffin-Nolan RJ, Zelehowsky A, Hamilton JG, Melcher PJ (2018) Green light drives photosynthesis in mosses. J Bryol 40(4):342–349

    Article  Google Scholar 

  • Guyot G (1990) Optical properties of vegetation canopies. In: Steven MD, Clark JA (eds) Applications of Remote Sensing in Agriculture. Butterworths, London, pp 19–43

    Chapter  Google Scholar 

  • Hamerlynck EP, Tuba Z, Csintalan Z, Nagy Z, Henebry G, Goodin D (2000) Diurnal variation in photochemical dynamics and surface reflectance of the desiccation-tolerant moss, Tortula ruralis. Plant Ecol 151:55–63

    Article  Google Scholar 

  • Harris A (2008) Spectral reflectance and photosynthetic properties of Sphagnum mosses exposed to progressive drought. Ecohydrol 1:35–42

    Article  CAS  Google Scholar 

  • Heber U (2008) Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens. Planta 228(4):641–650

    Article  CAS  PubMed  Google Scholar 

  • Heber U (2012) Conservation and dissipation of light energy in desiccation-tolerant photoautotrophs, two sides of the same coin. Photosynth Res 113:5–13

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Bilger W, Shuvalov VA (2006) Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation. J Exp Bot 57:2993–3006

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Xiao L, Bao F, Li X, He Y (2016) Dehydration-responsive features of Atrichum undulatum. J Plant Res 129:945–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ino Y (1990) Field measurement of net photosynthesis of mosses at Langhovde, East Antarctica. Ecol Res 5:195–205

    Article  Google Scholar 

  • Jassey VEJ, Signarbieux C (2019) Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits. Glob Change Biol 25:3859–3870

    Article  Google Scholar 

  • Jupa R, Hájek J, Hazdrová J, Barták M (2012) Interspecific differences in photosynthetic efficiency and spectral reflectance in two Umbilicaria species from Svalbard during controlled desiccation. Czech Polar Rep 2(1):31–41

    Article  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli D, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klavina L, Springe G, Nikolajeva V, Martsinkevich I, Nakurte I, Dzabijeva D, Steinberga I (2015) Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extract (moss phytochemistry). Molecules 20:17221–17243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudoh S, Kashino Y, Imura S (2003) Ecological studies of aquatic moss pillars in Antarctic lakes. Light response and chilling and heat sensitivity of photosynthesis. Polar Biosci 16:33–42

    Google Scholar 

  • Lappalainen NM, Huttunen S, Suokanerva H (2008) Acclimation of a pleurocarpous moss Pleurozium schreberi (Britt.) Mitt. to enhanced ultraviolet radiation in situ. Glob Change Biol 14:321–333

    Article  Google Scholar 

  • Láska K, Barták M, Hájek J, Prošek P, Bohuslavová O (2011) Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. Czech Polar Rep 1:49–62

    Article  Google Scholar 

  • Li J, Li X, Chen C (2014) Degradation and reorganization of thylakoid protein complexes of Bryum argenteum in response to dehydration and rehydration. Bryologist 117:110–118

    Article  Google Scholar 

  • Lichtenthaler HK, Welburn AR (1983) Determination of total carotenoids and chlorophylls a and b of extracts in different solvents. Biochem Soc T 11:591–592

    Article  CAS  Google Scholar 

  • Lovelock CE, Robinson SA (2002) Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant Cell Environ 25(10):1239–1250

    Article  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Malenovský Z, Turnbull JD, Lucieer A, Robinson SA (2015) Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New Phytol 208:608–624

    Article  PubMed  Google Scholar 

  • Marschall M, Borbély P, Pné-Kónya E, Süto S (2018) Background processes and the components of photoprotection and regeneration under rehydration in desiccation-tolerant and desiccation-sensitive bryophytes. In: Book for the Plant Biology Europe Conference in Copenhagen, p. 80

  • May LJ, Parker T, Unger S, Oberbauer SF (2018) Short term changes in moisture content drive strong changes in Normalized Difference Vegetation Index and gross primary productivity in four Arctic moss communities. Remote Sens Environ 212:114–120

    Article  Google Scholar 

  • Mayaba N, Minibayeva M, Beckett RP (2002) An oxidative burst of hydrogen peroxide during rehydration following desiccation in the moss Atrichum androgynum. New Phytol 155:275–283

    Article  CAS  Google Scholar 

  • Murray KJ, Tenhunen JD, Nowak RS (1993) Photoinhibition as a control on photosynthesis and production of Sphagnum mosses. Oecologia 96(2):200–207

    Article  CAS  PubMed  Google Scholar 

  • Nabe H, Funabiki R, Kashino Y, Koike H, Satoh K (2007) Responses to desiccation stress in bryophytes and an important role of dithiothreitol – Insensitive non-photochemical quenching against photoinhibition in dehydrated states. Plant Cell Physiol 48(11):1548–1557

    Article  CAS  PubMed  Google Scholar 

  • Nayaka S, Saxena P (2014) Physiological responses and ecological success of lichen Stereocaulon foliolosum and moss Racomitrium subsecundum growing in same habitat in Himalaya. J Fundam Appl Life Sci 4(3):167–179

    Google Scholar 

  • Newsham KK, Hodgson DA, Murray AWA, Peat HJ, Lewis Smith RI (2002) Response of two Antarctic bryophytes to stratospheric ozone depletion. Glob Change Biol 8:972–983

    Article  Google Scholar 

  • Niyogi KK, Li X-P, Rosenberg V, Jung H-S (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382

    Article  CAS  PubMed  Google Scholar 

  • Oliver MJ, Mishler BD, Quisenberry JE (1993) Comparative measures of desiccation-tolerance in the Tortula ruralis complex. I. Variation in damage control and repair. Am J Bot 80:127–136

    Article  Google Scholar 

  • Oliver MJ, Velten J, Wood AJ (2000) Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses. Plant Ecol 151:73–84

    Article  Google Scholar 

  • Oliver MJ, Velten J, Mischler BD (2005) Desiccation tolerance in bryophytes: a reflection of a primitive strategy for plant survival in dehydrating habitats. Integr Comp Biol 45:788–799

    Article  PubMed  Google Scholar 

  • Oliver MJ, Hudgeons J, Dowd SE, Payton PR (2009) A combined subtractive suppression hybridization and expression profiling strategy to identify novel desiccation response transcripts from Tortula ruralis gametophytes. Physiol Plant 136:437–460

    Article  CAS  PubMed  Google Scholar 

  • Paciolla M, Tommasi F (2003) The ascorbate system in two bryophytes: Brachythecium velutinum and Marchantia polymorpha. Biol Plantarum 47:387–393

    Article  CAS  Google Scholar 

  • Pannewitz S, Green TGA, Maysek K, Schlensog M, Seppelt R, Sancho LG, Türk R, Schroeter B (2005) Photosynthetic responses of three common mosses from continental Antarctica. Antarctic Sci 17:341–352

    Article  Google Scholar 

  • Peng X, Deng X, Tang X, Tan T, Zhang D, Liu B, Lin H (2019) Involvement of Lhcb6 and Lhcb5 in photosynthesis regulation in physcomitrella patens. response to abiotic stress. Int J Mol Sci 20:3665

    Article  CAS  PubMed Central  Google Scholar 

  • Pizarro M, Contreras RA, Köhler H, Zúńiga GE (2019) Desiccation tolerance in the Antarctic moss Sanionia uncinata. Biol Res 52:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Pressel S, Duckett JG (2010) Cytological insights into the desiccation biology of a model system: moss protonemata. New Phytol 185:944–963

    Article  PubMed  Google Scholar 

  • Proctor MCF (1990) The physiological basis of bryophyte production. Bot J Linn Soc 104:61–77

    Article  Google Scholar 

  • Proctor MCF, Ligrone R, Duckett JG (2007a) Desiccation tolerance in the Moss Polytrichum formosum: Physiological and fine-structural changes during desiccation and recovery. Ann Bot 99:1243

    Article  CAS  PubMed Central  Google Scholar 

  • Proctor MFC, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007b) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    Article  CAS  Google Scholar 

  • Putzke J, Pereira AB (2001) The Antarctic mosses with special reference to the Shetland Island. Lutheran University of Brazil, Editora da Ulbra, Canoas, p 196

    Google Scholar 

  • Rastogi A, Strozecki M, Kalaji H, Łuców D, Lamentowicz M, Juszczak R (2019) Impact of warming and reduced precipitation on photosynthetic and remote sensing properties of peatland vegetation. Environ Exp Bot 160:71–80

    Article  CAS  Google Scholar 

  • Rastogi A, Antala M, Gąbka M, Rosadzinski S, Stróżecki M, Brestic M, Juszczak R (2020) Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax). Scientific Rep 10:8592

    Article  CAS  Google Scholar 

  • Robinson SA, Wasley J, Popp M, Lovelock CE (2000) Desiccation tolerance of three moss species from continental Antarctica. Aust J Plant Physiol 27:379–388

    CAS  Google Scholar 

  • Robinson SA, Turnbull JD, Lovelock CE (2005) Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici. Glob Change Biol 11:476–489

    Article  Google Scholar 

  • Robinson SA, King DH, Bramley-Alves J, Waterman MJ, Ashcroft MB, Wasley J, Turnbull JD, Miller RE, Ryan-Colton E, Benny T, Mullany K, Clarke LJ, Barry LA, Hua Q (2018) Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat Clim Change 8:879–884

    Article  CAS  Google Scholar 

  • Roháček K (2010) Method for resolution and quantification of components of the non-photochemical quenching (qN). Photosynth Res 105:101–113

    Article  PubMed  Google Scholar 

  • Roháček K, Barták M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363

    Article  Google Scholar 

  • Ronen R, Galun M (1984) Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of Chlorophyll degradation. Environ Exp Bot 24:239–245

    Article  CAS  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: Freden SC, Mercanti EP, Becker M (eds) Third Earth Resources Technology Satellite-1 Symposium Technical Presentations, NASA SP-351, vol I. NASA, Washington, pp 309–317

    Google Scholar 

  • Russell S (1985) Bryophyte production at Marion Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 200–203

    Chapter  Google Scholar 

  • Rütten D, Santarius KA (1992) Age-related differences in frost sensitivity of the photosynthetic apparatus of two Plagiomnium species. Planta 187(2):224–229

    Article  PubMed  Google Scholar 

  • Schlensog M, Schroeter B (2001) A new method for the accurate in site monitoring of chlorophyll a fluorescence in lichens and bryophytes. Lichenologist 33(5):443–452

    Article  Google Scholar 

  • Schlensog M, Pannewitz S, Green TGA, Schroeter B (2004) Metabolic recovery of continental antarctic cryptogams after winter. Polar Biol 27:399–400

    Article  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecol Stud 100:47–70

    Google Scholar 

  • Schroeter B, Green TGA, Kulle D, Pannewitz S, Schlensog M, Sancho LG (2012) The moss Bryum argenteum var. muticum Brid. is well adapted to cope with high light in continental Antarctica. Antarct Sci 24:281–291

    Article  Google Scholar 

  • Seel WE, Baker NR, Lee JA (1992a) Analysis of the decrease in photosynthesis on desiccation of mosses from xeric and hydric environments. Phys Plant 86:451–458

    Article  Google Scholar 

  • Seel WE, Hendry GAF, Lee JA (1992b) The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats. J Exp Bot 4:1023–1031

    Article  Google Scholar 

  • Singh J, Singh RP (2014) Adverse effects of UV-B radiation on plants growing at Schirmacher Oasis East Antarctica. Toxicol Int 21(1):101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šinžar-Sekulić J, Sabovljević M, Stevanović B (2005) Comparison of desiccation tolerance among mosses from different habitats. Arch. Biol. Sci 57(3):189–192

    Article  Google Scholar 

  • Slavov CH, Reus M, Holzwarth AR (2013) Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. J Phys Chem B 117(38):11326–11336

    Article  CAS  PubMed  Google Scholar 

  • Smith RCG, Adams J, Stephens DJ, Hick PT (1995) Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Aust J Agric Res 46:113–125

    Article  Google Scholar 

  • Stark LR, Greenwood JL, Brinda JC, Oliver MJ (2013) The desert moss Pterygoneurum lamellatum (Pottiaceae) exhibits an inducible ecological strategy of desiccation tolerance: effects of rate of drying on shoot damage and regeneration. Am J Bot 100(8):1522–1531

    Article  PubMed  Google Scholar 

  • Stella GR (2016) Light stress and photoprotection in green algae, mosses and diatoms. Ph.D. thesis, University of Verona and University Pierre et Marie Curie, 144 p

  • Stoklasa-Wojtasz A, Rzepka A, Rit G (2012) Responses of mosses species on environment stress factors. In: Grzesiak MT, Rzepka A, Hura T, Grzesiak S (eds) Plant functioning under environmental stress The F Górski Institute of Plant Physiology. Polish Academy of Science, Cracow, pp 69–83

    Google Scholar 

  • Tatur A, Myrcha A, Fabiszewski J, Niegodzisz J (1997) Formation of abandoned penguin colony ecosystems in maritime Antarctic. Polar Biol 17:405–417

    Article  Google Scholar 

  • Trnková K, Barták M (2017) Desiccation-induced changes in photochemical processes of photosynthesis and spectral reflectance in Nostoc commune (Cyanobacteria, Nostocales) colonies from polar regions. Phycol Res 65(1):44–50

    Article  Google Scholar 

  • Tuba Z, Csintalan Z, Proctor MCF (1996) Photosynthetic responses of a moss, Tortula ruralis ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day concentration. New Phytol 133:353–361

    Article  PubMed  Google Scholar 

  • Valøen K (2019) Stochastic rain events increase NDVI through moss water content: a High-Arctic field experiment. Master’s thesis. Norwegian University of Science and Technology, 46

  • Van Gaalen KE, Flanagan L, Peddle DR (2007) Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying contents. Oecologia 153(1):19–28

    Article  PubMed  Google Scholar 

  • Wasley J, Robinson SA, Lovelock C, Popp M (2006) Some like it wet—Biological characteristics underpinning tolerance of extreme water stress events in Antarctic bryophytes. Funct Plant Biol 33(5):443–455

    Article  PubMed  Google Scholar 

  • Waterman MJ, Bramley-Alves J, Miller RE, Keller PA, Robinson SA (2018) Photoprotection enhanced by red cell wall pigments in three East Antarctic mosses. Biol Res 51:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59:63–72

    Article  CAS  Google Scholar 

  • Wood AJ (2007) The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. Bryologist 110:163–177

    Article  Google Scholar 

  • Yamakawa H, Fukushima Y, Itoh S, Heber U (2012) Three different mechanisms of energy dissipation of a desiccation-tolerant moss serve one common purpose: to protect reaction centres against photo-oxidation. J Exp Bot 63:3765–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X (2016) Effects of drought stress and rehydration on chlorophyll fluorescence characteristics of Erythrodontium julaceum (Schwaegr.) par. In areas of puding karst rock desertification. Bangladesh J Bot 45(4):911–917

    Google Scholar 

  • Zhang X, Zhao Y, Wang S (2017) Responses of antioxidant defense system of epilithic mosses to drought stress in karst rock desertified areas. Acta Geochim 36(2):205–212

    Article  CAS  Google Scholar 

  • Zhou X, Huang W, Kong W, Ye H, Dong Y, Casa R (2017) Assessment of leaf carotenoids content with a new carotenoid index: development and validation on experimental and model data. Int J Appl Earth Obs 57:24–35

    Google Scholar 

  • Zhou X, Huang W, Zhang J, Kong W, Casa R, Huang Y (2019) A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. Int J Appl Earth Obs 76:128–142

    Google Scholar 

  • Zotz G, Kahler H (2007) A moss “canopy”—Small-scale differences in microclimate and physiological traits in Tortula ruralis. Morphol Distrib Funct Ecol Plants Flora 202:661–666

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the ECOPOLARIS and CzechPolar-I and II projects (CZ.02.1.01/0.0/0.0/16_013/0001708, LM2010009 and LM2015078) for providing facilities and the infrastructure used to conduct the research reported in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miloš Barták or Josef Hájek.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by M. Horbowicz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orekhova, A., Barták, M., Hájek, J. et al. Species-specific responses of spectral reflectance and the photosynthetic characteristics in two selected Antarctic mosses to thallus desiccation. Acta Physiol Plant 44, 6 (2022). https://doi.org/10.1007/s11738-021-03339-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03339-6

Keywords

Navigation