Skip to main content
Log in

Pistil abortion in Japanese apricot (Prunus mume Sieb. et Zucc.): isolation and functional analysis of PmCCoAOMT gene

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The abnormal pistils widely occur in Japanese apricot (Prunus mume Sieb. et Zucc) and seriously affect the fruit production. In this study, a CCoAOMT homologue, PmCCoAOMT, was cloned in Japanese apricot and the bioinformatics software analyzed the structural characteristics. The PmCCoAOMT protein was detected to be located in the cell cytoplasm by onion transient expression experiment. Analysis of the real-time PCR data showed that PmCCoAOMT gene expressed in the prophase development of pistil and the expression level in ‘Daqiandi’ was higher than ‘Longyan.’ The expression level in ‘Longyan’ was higher than ‘Daqiandi’ in the late period development of pistil, and the expression level of perfect flower (perfect pistil) was higher than imperfect flower (pistil deformity and no pistil). Compared with the control, the over-expression of PmCCoAOMT transgenic tobacco lines showed bigger flowers, darker petals. The lignin monomer composition in transgenic tobacco lines was also measured, and the results showed that transgenic tobacco lines had a higher S (Syringyl)/G (Guaiacyl) ratio (22.3 %) than control lines (11.8 %). Also, the perfect flower buds contained more S/G ratio (92.62 %) than imperfect flower buds (83.55 %) in ‘Daqiandi.’ Our results indicated that the PmCCoAOMT gene might have function in lignin accumulation, which contributed to pistil development in Japanese apricot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54(1):519–546

    Article  CAS  PubMed  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8(12):576–581

    Article  CAS  PubMed  Google Scholar 

  • Cai BH, Zhang JY, Gao ZH, Qu SC, Tong ZG, Mi L, Qiao YS, Zhang Z (2008) An improved method for isolation of total RNA from the leaves of Fragaria spp. Jiangsu Agric Sci 24(6):875–877 (in Chinese)

    Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol 110(1):3–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759–761

    Article  CAS  PubMed  Google Scholar 

  • Chu MY (1999) China fruit records-Mei. China Forestry, Beijing (in Chinese)

    Google Scholar 

  • Gao ZH, Wang S, Zhang Z (2006) Comparative study on flower and fruit characteristics of 29 varieties in Japanese apricot (Prunus mume Sieb. et Zucc.). Jiangsu Agric Sci 6:231–233 (in Chinese)

    Google Scholar 

  • Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13(1):73–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou JH, Gao ZH, Zhang Z, Chen SM, Ando T, Zhang JY, Wang XW (2011) Isolation and characterisation of an AGAMOUS homologue PmAG from the Japanese Apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol Rep 29(2):473–480

    Article  CAS  Google Scholar 

  • Kawaoka A, Nanto K, Ishii K, Ebinuma H (2008) Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genet 55(6):269–277

    Google Scholar 

  • Kersey R, Inoue K, Schubert KR, Dixon RA (1999) Immunolocalization of two lignin O-methyltransferases in stems of alfalfa (Medicago sativa L.). Protoplasma 209:46–57

    Article  CAS  PubMed  Google Scholar 

  • Kopycki JG, Stubbs MT, Brandt W, Hagemann M, Porzel A, Schmidt J, Schliemann W, Zenk MH, Vogt T (2008) Functional and structural characterization of a cation-dependent O-methyltransferase from the cyanobacterium Synechocystis sp. strain pcc 6803. J Biol Chem 283(30):20888–20896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Chen W, Zhao Y, Xiang Y, Jiang H, Zhu S, Cheng B (2013) Downregulation of caffeoyl-CoA O-methyltransferase (CCoAOMT) by RNA interference leads to reduced lignin production in maize straw. Genet Mol Biol 36(4):540–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marè C, Mazzucotelli E, Crosatti C, Francia E, Cattivelli L (2004) Hv-WRKY38: a new transcription factor involved in cold-and drought-response in barley. Plant Mol Biol 55(3):399–416

    Article  PubMed  Google Scholar 

  • Martz F, Maury S, Pinçon G, Legrand M (1998) cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol Biol 36(3):427–437

    Article  CAS  PubMed  Google Scholar 

  • Meyermans H, Morreel K, Lapierre C, Pollet B, De Bruyn A, Busson R, Herdewijn P, Devreese B, Van Beeumen J, Marita J, Ralph J, Chen C, Burggraeve B, Van Montagu M, Messens E, Boerjan W (2000) Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275(47):36899–36909

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Fang C, Zhou T, Wang Q, Chen J (2007) Accumulation of calycosin and its 7-O-beta-d-glucoside and related gene expression in seedlings of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao induced by low temperature stress. Plant Cell Rep 26(7):1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133(3):1051–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran XZ (2009) The development of enzymology studies in the metabolism of lignin biosynthesis. Chin Agric Sci Bull 25(03):23–27 (in Chinese)

    Google Scholar 

  • Shi T, Zhuang WB, Zhang Z, Sun HL, Wang LJ, Gao ZH (2012) Comparative proteomic analysis of pistil abortion in Japanese apricot (Prunus mume Sieb. et Zucc). J Plant Physiol 169(13):1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Umezawa T (2010) The cinnamate/monolignol pathway. Phytochem Rev 9(1):1–17

    Article  CAS  Google Scholar 

  • Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, Donaldson L, Pears L, Ralph J (2011) CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J 67(1):119–129

    Article  CAS  PubMed  Google Scholar 

  • Wang HZ, Hu B, Chen GP, Shi NN, Zhao Y, Yin QC, Liu JJ (2008) Application of Arabidopsis AGAMOUS second intron for the engineered ablation of flower development in transgenic tobacco. Plant Cell Rep 27(2):251–259

    Article  PubMed  Google Scholar 

  • Xia D, Wu X, Shi J, Yang Q, Zhang Y (2011) Phenolic compounds from the edible seeds extract of Chinese Mei (Prunus mume Sieb. et Zucc) and their antimicrobial activity. LWT-Food Sci Technol 44(1):347–349

    Article  CAS  Google Scholar 

  • Ye ZH, Kneusel RE, Matern U, Varner JE (1994) An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6(10):1427–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Zhang YJ, Xu JT, Niu XP, Qi JM, Tao A, Zhang LW, Fang PP, Lin LH, Su JG (2014) The CCoAOMT1 gene from jute (Corchorus capsularis L.) is involved in lignin biosynthesis in Arabidopsis thaliana. Gene 546(2):398–402

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Sheng Q, Lü S, Wang T, Song Y (2004) Characterization of three rice CCoAOMT genes. Chin Sci Bull 49(15):1602–1606 (in Chinese)

    Article  CAS  Google Scholar 

  • Zhong R, Morrison WH, Negrel J, Ye ZH (1998) Dual methylation pathways in lignin biosynthesis. Plant Cell 10(12):2033–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Morrison WH, Himmelsbach DS, Poole FL, Ye ZH (2000) Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124(2):563–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support for this research from the Natural Science Foundation of Jiangsu Province (BK20150679), Qinglan Project from Jiangsu Province, the Fundamental Funds for Central University (KYZ201208), and the National Natural Science Foundation of China (31500571).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Gao.

Additional information

Communicated by PK Nagar.

H. Sun and T. Shi contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Shi, T., Song, J. et al. Pistil abortion in Japanese apricot (Prunus mume Sieb. et Zucc.): isolation and functional analysis of PmCCoAOMT gene. Acta Physiol Plant 38, 114 (2016). https://doi.org/10.1007/s11738-016-2131-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2131-9

Keywords

Navigation