Skip to main content
Log in

Low transcription of CmsIAA9 in the basal pistil is related to parthenocarpic fruiting of fingered citron (Foshou)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Seedlessness is a commercial trait that provides a good model for uncovering fruiting mechanisms. Fingered citron (Citrus medica L. var. sarcodactylis Swingle, Foshou), a variant of Citrus medica L. (Xiangyuan), is a traditional ornamental tree in China with a finger-like fruit that is seedless. Its fruit-setting mechanism has not been studied before. The emasculation of Foshou showed that fruits set and were in a good development condition consistent with the non-emasculated control, indicating that Foshou produces parthenocarpic fruit. Foshou pollen can normally germinate and elongate in vitro. The pollen tubes of Xiangyuan entered the ovary 3 days after pollination, while Foshou pollen only germinated in the finger portion of the pistil and did not stretch to the ovary after a week. Moreover, paraffin sections of Foshou pistils revealed that Foshou ovules were aborted or abnormal during flower development, presumably having lost the attraction of female gametes for fertilization. These observations indicate that Foshou shows obligate parthenocarpy. Real-time quantitative PCR showed the mRNA expression levels of auxin-related genes, IAA9, AUCSIA, and PIN4, were down-regulated after anthesis. The auxin response gene CmsIAA9 was significantly down-regulated at 3 days post-anthesis in the basal pistil compared with CmIAA9 in Xiangyuan. Furthermore, the fruit set rate was reduced if the apical pistil was treated with NPA (N-1-naphthylphthalamic acid; an auxin transport inhibitor). In summary, the low transcription of CmsIAA9 in the basal pistil is related to parthenocarpic fruiting in Foshou. This result highlights that auxin could be used in field fruit breeding to obtain a greater number of Foshou fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via pecific expression of the rolB gene in the ovary. Planta 217(5):726–735

    Article  CAS  PubMed  Google Scholar 

  • Chen WR, Zhang ZZ, Xin DD, Guo WD (2010) Identification and expression analysis of cold-regulated genes in fingered citron (Citrus medica var sarcodactylis Swingle). In Vitro Cell Dev-An 46:S120–S121

    Google Scholar 

  • Coombe BG (1960) Relationship of growth and development to changes in sugars, auxins, and gibberellins in fruit of seeded and seedless varieties of Vitis vinifera. Plant Physiol 35(2):241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong M, Mariani C, Vriezen WH (2009a) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60(5):1523–1532

    Article  PubMed  Google Scholar 

  • de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009b) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57(1):160–170

    Article  PubMed  Google Scholar 

  • Distefano G, Caruso M, La Malfa S, Gentile A, Tribulato E (2009) Histological and molecular analysis of pollen–pistil interaction in clementine. Plant Cell Rep 28(9):1439–1451

  • Du LM, Bao CL, Hu TH, Zhu QM, Hu HJ, He QY, Mao WH (2016) SmARF8, a transcription factor involved in parthenocarpy in eggplant. Mol Gen Genomics 291(1):93–105

    Article  CAS  Google Scholar 

  • Else MA, Stankiewicz-Davies AP, Crisp CM, Atkinson CJ (2004) The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention. J Exp Bot 55(405):2099–2109

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Horiuchi H, Takato H, Kohno M, Suzuki S (2012) Auxin-responsive grape Aux/IAA9 regulates transgenic Arabidopsis plant growth. Mol Biol Rep 39(7):7823–7829

    Article  CAS  PubMed  Google Scholar 

  • He HY, Ling LQ, Shi GP, Zhang N, Mao QM (1988) Chemical constituents of the Chinese traditional drug fingered citron. Zhong Yao Tong Bao (Beijing, China: 1981) 13(6):32–34

    CAS  Google Scholar 

  • Kang CY, Darwish O, Geretz A, Shahan R, Alkharouf N, Liu ZC (2013) Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 25(6):1960–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KN, Ko YJ, Yang HM, Ham YM, Roh SW, Jeon YJ, Oda T (2013) Anti-inflammatory effect of essential oil and its constituents from fingered citron (Citrus medica L. var. sarcodactylis) through blocking JNK, ERK and NF-κB signaling pathways in LPS-activated RAW 264.7 cells. Food Chem Toxicol 57:126–131

    Article  CAS  PubMed  Google Scholar 

  • Kojima K (1996) Changes of abscisic acid, indole-3-acetic acid and gibberellin-like substances in the flowers and developing fruitlets of citrus cultivar ‘Hyuganatsu’. Sci Hortic-Amsterd 65(4):263–272

    Article  CAS  Google Scholar 

  • Li J, Wu Z, Cui L, Zhang TL, Guo QW, Xu J, Jia L, Lou QF, Huang SW, Li ZG, Chen JF (2014) Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.) Plant Cell Physiol 55(7):1325–1342

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Liang JJ, Zhu X, Xiao K, Li TZ, Hu JF (2016) Auxin- and cytokinin-induced berries set in grapevine partly rely on enhanced gibberellin biosynthesis. Tree Genet Genomes 12(3):1–12

    Article  Google Scholar 

  • Mazzucato A, Taddei AR, Soressi GP (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125(1):107–114

    CAS  PubMed  Google Scholar 

  • Medina M, Roque E, Pineda B, Canas L, Rodriguez-Concepcion M, Beltran JP, Gomez-Mena C (2013) Early anther ablation triggers parthenocarpic fruit development in tomato. Plant Biotechnol J 11(6):770–779

    Article  CAS  PubMed  Google Scholar 

  • Mesejo C, Yuste R, Martínez-Fuentes A, Rei C, Iglesias DJ, Primo-Millo E, Agustí M (2013) Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible (Clementine mandarins). Physiol Plantarum 148(1):87–96

  • Mesejo C, Yuste R, Reig C, Martinez-Fuentes A, Iglesias DJ, Munoz-Fambuena N, Bermejo A, Germana MA, Primo-Millo E, Agusti M (2016) Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic citrus species. Plant Sci 247:13–24

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Qin Y, da Silva JAT, Ye Z, Hu G (2013) Identification of differentially expressed genes in pistils from self-incompatible Citrus reticulata by suppression subtractive hybridization. Mol Biol Rep 40(1):159–169

    Article  CAS  PubMed  Google Scholar 

  • Miao HX, Ye ZX, Hu GB, Qin YH (2015) Comparative transcript profiling of gene expression between self-incompatible and self-compatible mandarins by suppression subtractive hybridization and cDNA microarray. Mol Breeding 35(1):1–15

    Article  CAS  Google Scholar 

  • Molesini B, Pandolfini T, Rotino GL, Dani V, Spena A (2009) Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant Physiol 149(1):534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molesini B, Pandolfini T, Pii Y, Korte A, Spena A (2012) Arabidopsis thaliana AUCSIA-1 regulates auxin biology and physically interacts with a kinesin-related protein. PLoS One 7(7):e41327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, Bergès H (2012) Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. J Exp Bot 63(13):4901–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paciorek T, Sauer M, Balla J, Wiśniewska J, Friml J (2006) Immunocytochemical technique for protein localization in sections of plant tissues. Nat Protoc 1(1):104–107

    Article  CAS  PubMed  Google Scholar 

  • Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6(1):7–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandolfini T (2009) Seedless fruit production by hormonal regulation of fruit set. Nutrients 1(2):168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandolfini T, Molesini B, Spena A (2013) AUCSIA: an ancestral green plant miniprotein and the emergence of auxin transport. Plant Signal Behav 8(2):e22928

    Article  PubMed  PubMed Central  Google Scholar 

  • Pattison RJ, Csukasi F, Zheng Y, Fei ZJ, Knaap EVD, Catala C (2015) Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol 168(4):1684–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrani JC, Carrera E, Ruiz-Rivero O, Gallego-Giraldo L, Peres LEP, Garcia-Martinez JL (2010) Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in tomato mediated by gibberellins. Plant Physiol 153(2):851–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in citrus: from classical techniques to emerging biotechnological approaches. J Am Soc Hortic Sci 133(1):117–126

    Google Scholar 

  • Vardi A, Frydmanshani A, Weinbaum SA (1988) Assessment of parthenocarpic tendency in citrus using irradiated marker pollen. In: Goren R, Mendel K, Goren N (eds) Citriculture: proceedings of the sixth international citrus congress: middle-east, Tel Aviv, Israel, March 6-11, 1988/scientific editors. Balaban, Rehovot, c1989.

  • Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotechnol 18(6):233–242

    Article  CAS  PubMed  Google Scholar 

  • Venkataratnam L (1949) Hormone induced set and parthenocarpy in mango (Mangifera indica L.) Curr Sci 18(11):409

    CAS  PubMed  Google Scholar 

  • Vivian-Smith A, Koltunow AM (1999) Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. Plant Physiol 121(2):437–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Jones B, Li ZG, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17(10):2676–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Ye J, Guo WD, Wang CC, Hu HT (2012) Differences in cold tolerance and expression of two fatty acid desaturase genes in the leaves between fingered citron and its dwarf mutant. Trees 26(4):1193–1201

    Article  CAS  Google Scholar 

  • Ye WJ, Qin YH, Ye ZX, da Silva JATD, Zhang LX, Wu XY, Lin SQ, Hu GB (2009) Seedless mechanism of a new mandarin cultivar ‘Wuzishatangju’ (Citrus reticulata Blanco). Plant Sci 177(1):19–27

    Article  CAS  Google Scholar 

  • Zhang SW, Huang GX, Ding F, He XH, Pan JC (2012) Mechanism of seedlessness in a new lemon cultivar ‘Xiangshui’ [Citrus limon (L.) Burm. F]. Sex Plant Reprod 25(4):337–345

    Article  PubMed  Google Scholar 

  • Zhang CH, Gong PJ, Wei R, Li SX, Zhang XT, Yu YH, Wang YJ (2013) The metacaspase gene family of Vitis vinifera L.: characterization and differential expression during ovule abortion in stenospermocarpic seedless grapes. Gene 528(2):267–276

    Article  CAS  PubMed  Google Scholar 

  • Zhang SW, Ding F, He XH, Luo C, Huang GX, Hu Y (2015) Characterization of the ‘Xiangshui’ lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility. Mol Gen Genomics 290(1):365–375

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Guo.

Electronic supplementary material

ESM 1

(DOCX 2.69 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, F., Wang, Y., Chen, M. et al. Low transcription of CmsIAA9 in the basal pistil is related to parthenocarpic fruiting of fingered citron (Foshou). Mol Breeding 37, 101 (2017). https://doi.org/10.1007/s11032-017-0693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0693-x

Keywords

Navigation