Skip to main content

Advertisement

Log in

Production of secondary metabolites by mycorrhizal plants with medicinal or nutritional potential

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This review surveys the results of recent studies and concludes that inoculation with arbuscular mycorrhizal fungi can increase the production of plant secondary metabolites that have medicinal or nutritional potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117

    CAS  Google Scholar 

  • Agra MF, Freitas PF, Barbosa-Filho JM (2007) Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Braz J Pharmacogn 17:114–140

    Article  Google Scholar 

  • Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in Cucumber roots. Biosci Biotechnol Biochem 66:762–769

    Article  CAS  PubMed  Google Scholar 

  • Andrade SAL, Malik S, Sawaya ACHF, Bottcher A, Mazzafera P (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35:867–880

    Article  CAS  Google Scholar 

  • Anjos ECT, Cavalcante UMT, Santos VF, Maia LC (2005) Produção de mudas de maracujazeiro-doce micorrizadas em solo desinfestado e adubado com fósforo. Pesq Agropec Bras 40:345–351

    Article  Google Scholar 

  • Araim G, Saleem A, Arnason JT, Charest C (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57:2255–2258

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Esteban R, García-Plazaola JI, Goecoechea N (2013a) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97:3119–3128

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2013b) The arbuscular mycorrhizal symbiosis can overcome reductions in yeld and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci Hortic 164:145–154

    Article  CAS  Google Scholar 

  • Berbara RLL, Souza FA, Fonseca HMAC (2006) Fungos micorrízicos arbusculares: muito além da nutrição. In: Fernandes MS (ed) Nutrição Mineral de Plantas. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 53–78

    Google Scholar 

  • Bharti N, Baghel S, Barnawal D, Yadav A, Kaira A (2013) The greater effectiveness of Glomus mosseae and Glomus intraradices in improving productivity, oil content and tolerance of salt-stressed menthol mint (Mentha arvensis). J Sci Food Agric 93:2154–2161

    Article  CAS  PubMed  Google Scholar 

  • Caldwell CR, Britz SJ (2006) Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. J Food Compos Anal 19:637–644

    Article  CAS  Google Scholar 

  • Carvalho JCT, Gosmann G, Schenkel EP (2007) Compostos fenólicos simples e heterosídicos. In: Simões CMO, Schenkel EP, Gosmann G, Mell JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento. UFGS, Porto Alegre, pp 519–535

    Google Scholar 

  • Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas-Navarro R (2010) Root colonization by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria x ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90:1774–1782

    CAS  PubMed  Google Scholar 

  • Cavalcante UMT, Maia LC, Nogueira RJMC, Santos VF (2001) Respostas fisiológicas em mudas de maracujazeiro amarelo (Passiflora edulis Sims. F. flavicarpa Deg.) inoculadas com fungos micorrízicos arbusculares e submetidas a estresse hídrico. Acta Bot Bras 15:379–390

    Article  Google Scholar 

  • Cavalcante UMT, Maia LC, Melo AMY, Santos VF (2002) Influência da densidade de fungos micorrízicos arbusculares na produção de mudas de maracujazeiro-amarelo. Pesq Agropec Bras 37:643–649

    Article  Google Scholar 

  • Cavaleiro C (2007) Plantas aromáticas e óleos essenciais em farmácia e medicina. In: Figueiredo AC, Barroso JG, Pedro LG (eds) Potencialidades e aplicações das plantas aromáticas e medicinais. Edição da Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal, Lisboa, Curso teórico-prático, pp 55–62

    Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

    Article  CAS  Google Scholar 

  • Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181

    Article  Google Scholar 

  • Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic 160:222–229

    Article  CAS  Google Scholar 

  • Chu EY, Moller MRF, Carvalho JG (2001) Efeitos da inoculação micorrízica em mudas de gravioleira em solo fumigado e não fumigado. Pesq Agropec Bras 36:671–680

    Article  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Article  CAS  PubMed  Google Scholar 

  • Copetta A, Lingua G, Bardi L, Masoero G, Berta G (2007) Influence of arbuscular mycorrhizal fungi on growth and essential oil composition in Ocimum basilicum var. Genovese. Caryologia 60:106–110

    Article  Google Scholar 

  • Cosme M, Franken P, Mewis I, Baldermann S, Wurst S (2014) Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza 24:565–570

    Article  CAS  PubMed  Google Scholar 

  • Dave S, Tarafdar JC (2011) Stimulatory synthesis of saponin by mycorrhizal fungi in safed musli (Chlorophytum borivilianum) tubers. Int Res J Agric Sci Soil Sci 1:137–141

    Google Scholar 

  • Eftekhari M, Alizadeh M, Ebrahimi P (2012) Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Ind Crop Prod 38:160–165

    Article  CAS  Google Scholar 

  • Fester T, Maier W, Strack D (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8:241–246

    Article  CAS  Google Scholar 

  • Freitas MSM, Martins MA, Vieira IJC (2004a) Produção de óleos essenciais de Mentha arvensis em resposta à inoculação de fungos micorrízicos arbusculares. Pesq Agropec Bras 39:887–894

    Google Scholar 

  • Freitas MSM, Martins MA, Carvalho AJC, Carneiro RFV (2004b) Crescimento e produção de fenóis totais em carqueja [Baccharis trimera (Less.) DC.] em resposta à inoculação com fungos micorrízicos arbusculares, na presença e na ausência de adubação mineral. Rev Bras Plantas Med 6:30–34

    CAS  Google Scholar 

  • Geneva MP, Stancheva IV, Boychinova MN, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702

    CAS  PubMed  Google Scholar 

  • Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Elevated carbon dioxide increases contents of flavonoids and phenolics compound, and antioxidant activities in Malaysian Young Ginger (Zingiber officinale Roscoe) varieties. Molecules 15:7907–7922

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Brit J Nutr 107:242–251

    Article  CAS  PubMed  Google Scholar 

  • Gobbo-Neto L, Lopes N (2007) Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Quím Nova 30:374–381

    Article  CAS  Google Scholar 

  • Gogoi P, Singh RK (2011) Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian J Sci Technol 4:119–125

    Google Scholar 

  • Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Biores Technol 81:77–79

    Article  CAS  Google Scholar 

  • Heidari M, Karami V (2014) Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. J Saudi Soc Agric Sci 13:9–13

    Google Scholar 

  • Heldt HW (2005) Plant biochemistry, 3rd edn. Elsevier Academic Press, London

    Google Scholar 

  • Ibrahim MH, Jaafar HZE (2011) Involvement of carbohydrate, protein and phenylalanine ammonia lyase in up-regulation of secondary metabolites in Labisia pumila under various CO2 and N2 levels. Molecules 16:4172–4190

    Article  CAS  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Biores Technol 93:307–311

    Article  CAS  Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587

    Article  CAS  PubMed  Google Scholar 

  • Karagiannidis T, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of orégano and mint plants. Sci Hort 129:329–334

    Article  CAS  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Khalafallah AA, Abo-Ghalia HH (2008) Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. J Appl Sci Res 4:559–569

    CAS  Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446

    Article  CAS  PubMed  Google Scholar 

  • Khaosaad T, Krenn L, Medjakovic S, Ranner A, Lössl A, Nell M, Jungbauer A, Vierheilig H (2008) Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J Plant Physiol 165:1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Article  Google Scholar 

  • Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64

    Article  CAS  Google Scholar 

  • Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, Agostino G, Gamalero E, Berta G (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225

    Article  PubMed Central  PubMed  Google Scholar 

  • Lister CE, Lancaster JE, Walker JRL (1996) Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J Sci Food Agric 71:313–320

    Article  CAS  Google Scholar 

  • Lizarazo K, Fernández-Marín B, Becerril JM, García-Plazaola JI (2010) Ageing and irradiance enhance vitamin E content in green edible tissues from crop plants. J Sci Food Agric 90:1994–1999

    CAS  PubMed  Google Scholar 

  • Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol 139:329–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maier W, Peipp H, Schimidt J, Wray V, Strack D (1995) Levels of terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. Plant Physiol 109:465–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maier W, Hammer K, Dammann U, Schulz B, Strack D (1997) Accumulation of sesquiterpenoid cyclohexanone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae***. Planta 202:36–42

    Article  CAS  Google Scholar 

  • Mandal S, Evelin H, Giri B, Singh VP (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194

    Article  Google Scholar 

  • Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur J Soil Biol 46:151–156

    Article  Google Scholar 

  • Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407

    Article  CAS  PubMed  Google Scholar 

  • Matsubara Y, Ishigaki T, Koshikawa K (2009) Changes in free amino acid concentrations in mycorrhizal strawberry plants. Sci Hortic 119:392–396

    Article  CAS  Google Scholar 

  • Morandi D, Bailey JA (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Phys Plant Path 24:357–364

    Article  CAS  Google Scholar 

  • Nagahashi G, Douds DD, Ferhatoglu Y (2010) Functional categories of root exudates compounds and their relevance to AM fungal growth. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 33–56

    Chapter  Google Scholar 

  • Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J Sci Food Agric 89:1090–1096

    Article  CAS  Google Scholar 

  • Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentration in Valeriana officinalis L. Planta Med 76:393–398

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MS, Campos MAS, Albuquerque UP, Silva FBS (2013) Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Ind Crop Prod 50:244–247

    Article  CAS  Google Scholar 

  • Oliveira MS, Campos MAS, Albuquerque UP, Silva FBS (2014) Arbuscular mycorrhizal fungi and vermicompost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. J Sci Food Agric. doi:10.1002/jsfa.6767

    Google Scholar 

  • Pedone-Bonfim MVL, Lins MA, Coelho IR, Santana AS, Silva FSB, Maia LC (2013) Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. J Sci Food Agric 93:1479–1484

    Article  CAS  PubMed  Google Scholar 

  • Peipp H, Maier W, Schmidt J, Wray V, Strack D (1997) Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots. Phytochemistry 44:581–587

    Article  CAS  Google Scholar 

  • Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J Agric Food Chem 56:3538–3545

    Article  CAS  PubMed  Google Scholar 

  • Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65:1925–1930

    Article  CAS  PubMed  Google Scholar 

  • Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye Grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253

    Article  CAS  Google Scholar 

  • Ramos DF, Leitão GG, Costa FN, Abreu L, Villarreal JV, Leitão SG, Fernández SLS, Silva PEA (2008) Investigation of the antimycobacterial activity of 36 plant extracts from the brazilian Atlantic Forest. Rev Bras Ciênc Farm 44:669–674

    Article  Google Scholar 

  • Rasouli-Sadaghiani M, Hassani A, Barin M, Danesh YR, Sefidkon F (2010) Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. J Med Plants Res 4:2222–2228

    CAS  Google Scholar 

  • Ratti N, Verma HN, Gautam SP (2010) Effect of Glomus species on physiology and biochemistry of Catharantus roseus. Indian J Microbiol 50:355–360

    Article  PubMed Central  PubMed  Google Scholar 

  • Rojas-Andrade R, Cerda-García-Rojas CM, Frías-Hernández JT, Dendooven L, Olalde-Portugal V, Ramos-Valdivia AC (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13:49–52

    Article  CAS  PubMed  Google Scholar 

  • Santana AS, Cavalcanti UMT, Sampaio EVSB, Maia LC (2014) Production, storage and costs of inoculum of arbuscular mycorrhizal fungi (AMF). Braz J Bot 37:159–165

    Article  Google Scholar 

  • Santos RI (2007) Metabolismo básico e origem dos metabólitos secundários. In: Simões CMO, Schenkel EP, Gosmann G, Mell JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento. UFGS, Porto Alegre, pp 403–434

    Google Scholar 

  • Santos SC, Mello JCP (2007) Taninos. In: Simões CMO, Schenkel EP, Gosmann G, Mell JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento. UFGS, Porto Alegre, pp 615–656

    Google Scholar 

  • Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Silva FSB (2006) Fase assimbiótica, produção, infectividade e efetividade de fungos micorrízicos em substratos com adubos orgânicos. PhD Thesis, Universidade Federal de Pernambuco

  • Silva MA, Cavalcante UMT, Silva FSB, Soares SAG, Maia LC (2004) Crescimento de mudas de maracujazeiro-doce (Passiflora alata Curtis) associadas a fungos micorrízicos arbusculares (Glomeromycota). Acta Bot Bras 18:981–985

    Article  Google Scholar 

  • Silva MF, Pescador R, Rebelo RA, Stürmer SL (2008) The effect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale. Braz J Plant Physiol 20:119–130

    Article  Google Scholar 

  • Silva FA, Silva FSB, Maia LC (2014) Biotechnical application of arbuscular mycorrhizal fungi in the production of foliar biomolecules in ironwood seedlings [Libidibia ferrea (Mart. ex Tul.) L.P.Queiroz var. ferrea]. J Med Plant Res 8:814–819

    Article  CAS  Google Scholar 

  • Singh R, Divya S, Awasthi A, Kalra A (2012) Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (patchouli) Benth. World J Microbiol Biotechnol 28:323–333

    Article  PubMed  Google Scholar 

  • Souza PVD (2000) Interação entre micorrizas arbusculares e ácido giberélico no desenvolvimento vegetativo de plantas de citrange carrizo. Cienc Rural 30:783–787

    Article  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  CAS  PubMed  Google Scholar 

  • Stopper H, Schimitt E, Kobras K (2005) Genotoxicity of phytoestrogens. Mutat Res 574:139–155

    Article  CAS  PubMed  Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2004) Plant physiology, 3rd edn. Sinauer Associates Publishers, Sunderland

    Google Scholar 

  • Toussaint J-P (2007) Investigating physiological changes in the aerial parts of AM plants: what do we where should we be heading? Mycorrhiza 17:349–353

    Article  PubMed  Google Scholar 

  • Toussaint J-P (2008) The effect of the arbuscular mycorrhizal symbiosis on the production of phytochemicals in basil. PhD Thesis, University of Adelaide

  • Toussaint J-P, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  CAS  PubMed  Google Scholar 

  • Toussaint J-P, Kraml M, Nell SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentration of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. Basilica. Plant Pathology 57:1109–1116

    Article  Google Scholar 

  • Tristão FSM, Andrade SAL, Silveira APD (2006) Fungos micorrízicos arbusculares na formação de mudas de Cafeeiro, em substratos orgânicos comerciais. Bragantia 65:649–658

    Article  Google Scholar 

  • Venkateswarlu B, Pirat M, Kishore N, Rasul A (2008) Mycorrhizal inoculation in neem (Azadirachta indica) enhances azadirachtin content in seed kernels. World J Microbiol Biotechnol 24:1243–1247

    Article  CAS  Google Scholar 

  • Vermerris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, Dordrecht

    Google Scholar 

  • Vierheilig H, Gagnon H, Strack D, Maier W (2000) Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza 9:291–293

    Article  CAS  Google Scholar 

  • Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J 21:571–578

    Article  CAS  PubMed  Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542

    Article  CAS  Google Scholar 

  • Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20:497–504

    Article  CAS  PubMed  Google Scholar 

  • Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. We are grateful to Dr. David Bousfield for the English review and the anonymous reviewers for their valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Valdirene Leite Pedone-Bonfim.

Additional information

Communicated by A. K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedone-Bonfim, M.V.L., da Silva, F.S.B. & Maia, L.C. Production of secondary metabolites by mycorrhizal plants with medicinal or nutritional potential. Acta Physiol Plant 37, 27 (2015). https://doi.org/10.1007/s11738-015-1781-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1781-3

Keywords

Navigation