Skip to main content
Log in

Exogenous hydrogen peroxide enhanced the thermotolerance of Festuca arundinacea and Lolium perenne by increasing the antioxidative capacity

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Heat stress is one of the most detrimental environment stresses for plants. Hydrogen peroxide (H2O2) is produced quickly in response to various stresses and likely plays a positive role in transmitting stress signal in organisms. This investigation addressed whether an exogenous H2O2 application would affect the heat response of turfgrasses and induce acclimation. Tall fescue (Festuca arundinacea cv. Barlexas) and perennial ryegrass (Lolium perenne cv. Accent), two important cool-season turfgrasses and forages, were sprayed with 10 mM H2O2 before they were treated with heat stress (38/30 °C, day/night) and compared with plants maintained at control temperatures (26/15 °C, day/night). Prior to the initiation of heat stress, H2O2 pretreatment increased the activities of guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione-dependent peroxidase (GPX) and the ascorbate and glutathione pool, and it decreased the GSH/GSSG ratio. During the heat stress process, pretreated plants from both grasses exhibited higher turfgrass quality and relative water content, and they experienced lower oxidative damage and H2O2 levels. Moreover, the activities of APX, GR, GPX and glutathione-S-transferase increased significantly in response to H2O2 pretreatment under heat stress. These results suggested that H2O2 most likely participated in the transduction of redox signaling and induced the antioxidative defense system, including various enzymatic and nonenzymatic H2O2 scavengers. The scavengers played important roles in improving the thermotolerance of tall fescue and perennial ryegrasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    Article  PubMed  CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK (2009) High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes. Acta Agron Hung 57:1–14

    Article  CAS  Google Scholar 

  • Anderson MD, Prasad TK, Stewart CR (1995) Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedling. Plant Physiol 109:1247–1257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Bio 55:373–399

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Babu NR, Devraj VR (2008) High temperature and salt stress response in French bean (Phaseolus vulgaris). Aust J Crop Sci 2:40–48

    Google Scholar 

  • Bindoli A, Rigobello MP (2013) Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Sign 18(13):1557–1593

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cao YY, Gao Y, Sun WJ, Huang YW, Zhang J, Bai JG (2013) Role of hydrogen peroxide pretreatment in heat-induced alteration of DNA methylation in cucumber leaves. Sci Hortic 151:173–183

    Article  CAS  Google Scholar 

  • Chen K, Chen L, Fan J, Fu J (2013) Alleviation of heat damage to photosystem II by nitric oxide in tall fescue. Photosynth Res 116(1):21–31

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Song C (2006) Hydrogen peroxide homeostasis and signaling in plant cells. Sci China Ser C-Life Sci 49(1):1–11

    Article  CAS  Google Scholar 

  • Dagmar P, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  Google Scholar 

  • Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Tansley Review No. 112. Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146(3):359–388

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fu JM, Huang B (2003) Effects of foliar application of nutrients on heat tolerance of creeping bentgrass. J Plant Nutr 26:81–96

    Article  CAS  Google Scholar 

  • Gechev T, Gadjev I, Van-Breusegem F, Inze D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59(4):708–714

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyriding. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Horváth E, Pál M, Szalai G, Páldi E, Janda T (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant 51:480–487

    Article  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot BullAcad Sin 46:1–10

  • İşeri ÖD, Körpe DA, Sahin FI, Haberal M (2013) Hydrogen peroxide pretreatment of roots enhanced oxidative stress response of tomato under cold stress. Acta Physiol Plant 35(6):1905–1913

    Article  Google Scholar 

  • Kamapfenkel K, Montagu MV (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 255:165–167

    Article  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol Plant 113:58–164

    Article  Google Scholar 

  • Kómives T, Gullner G, Kiraly Z (1998) Role of glutathione and glutathione-related enzymes in response of plants to environmental stress. Stress of Life 851:251–258

    Google Scholar 

  • Kreslavski VD, Los DA, Allakhverdiev SI, Kuznetsov VV (2012) Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59(2):141–154

    Article  CAS  Google Scholar 

  • Kumar S, Gupta D, Nayyar H (2012) Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiol Plant 34:75–86

    Article  CAS  Google Scholar 

  • Kuźniak E, Skłodowska M (2001) Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci 160:723–731

    Article  PubMed  Google Scholar 

  • Kuźniak E, Skłodowska M (2004) Differential implication of glutathione, glutathione-metabolizing enzymes and ascorbate in tomato resistance to pseudomonas syringae. J Phytopathol 152:529–536

    Article  Google Scholar 

  • Larkindale J, Huang BR (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  PubMed  CAS  Google Scholar 

  • Mäder M, Füssl R (1982) Role of peroxidase in lignification of tobacco cells. II. Regulation by phenolic compounds. Plant Physiol 70:1132–1134

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  PubMed  CAS  Google Scholar 

  • Neta ADA, Prisco JT, Eneas J, Medeiros JVR, Gomes E (2005) Hydrogen peroxide pre-treatment induces saltstress acclimation in maize plants. J Plant Physiol 162:1114–1122

    Article  Google Scholar 

  • Öztetik E (2008) A tale of plant glutathione S-transferases: since 1970. Bot Rev 74(3):419–437

    Article  Google Scholar 

  • Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2010) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239

    Article  PubMed  Google Scholar 

  • Raeside MC, Friend MA, Behrendt R, Lawson AR, Clark SG (2012) A review of summer-active tall fescue use and management in Australia’s high-rainfall zone. New Zeal J Agr Res 55(4):393–411

    Article  Google Scholar 

  • Scheneiter O, Améndola C (2012) Tiller demography in tall fescue (Festuca arundinacea) swards as influenced by nitrogen fertilization, sowing method and grazing management. Grass Forage Sci 67(3):426–436

    Article  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude homogenates use 5,5′-dithiol-bis(2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  PubMed  CAS  Google Scholar 

  • Turgeon AL (1996) Turfgrass management. Prentice Hall, Englewood Cliffs, NJ

  • Turner LR, Donaghy DJ, Lane PA, Rawnsley RP (2006) Effect of defoliation management, based on leaf stage, on perennial ryegrass (Lolium perenne L.), prairie grass (Bromus willdenowii Kunth.) and cocksfoot (Dactylis glomerata L.) under dryland conditions. 1. Regrowth, tillering and water-soluble carbohydrate concentration. Grass Forage Sci 61(2):164–174

    Article  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164(3):283–294

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Du Y, An G, Zhou Y, Song C (2006) Analysis of global expression profiles of Arabidopsis genes under abscisic acid and H2O2 applications. J Integr Plant Biol 48:62–74

    Article  CAS  Google Scholar 

  • Wang Y, Li JL, Wang JZ, Li ZK (2010) Exogenous H2O2 improves the chilling tolerance of Manilagrass and Mascarenegrass by activating the antioxidative system. Plant Growth Regul 61(2):195–204

    Article  CAS  Google Scholar 

  • Xu S, Li J, Zhang X, Wei H, Cui L (2006) Effects of heat acclimation pretreatment on changes of membranelipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Yuan Y, Qian H, Yu Y, Lian F, Tang D (2011) Thermotolerance and antioxidant response induced by heat acclimation in Freesia seedlings. Acta Physiol Plant 33(3):1001–1009

    Article  CAS  Google Scholar 

  • Zhang F, Gao H, Cui X (2008) Frequency of extreme high temperature days in China, 1961–2003. Weather 63(2):46–49

    Article  Google Scholar 

  • Zhao S, Blumwald E (1998) Changes in oxidation-reduction state and antioxidant enzymes in the roots of jack pine seedlings during cold acclimation. Physiol Plant 104:134–142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the West Light Foundation of The Chinese Academy of Sciences (Y3C4011100), and the National High Technology Rzesearch and Development Program of China (863 Program) (2009AA10Z108, 2008AA10Z409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Rong Ma.

Additional information

Communicated by A. Gniazdowska-Piekarska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Li, JL. et al. Exogenous hydrogen peroxide enhanced the thermotolerance of Festuca arundinacea and Lolium perenne by increasing the antioxidative capacity. Acta Physiol Plant 36, 2915–2924 (2014). https://doi.org/10.1007/s11738-014-1661-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1661-2

Keywords

Navigation