Skip to main content
Log in

Time-variant feedback processes in collective decision-making systems: influence and effect of dynamic neighborhood sizes

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Self-organizing systems rely on positive feedback (amplification of perturbations). In particular, in swarm systems, positive feedback builds up in a transient phase until maximal positive feedback is reached and the system converges temporarily on a state close to consensus. We investigate two examples of swarm systems showing time-variant positive feedback: alignment in locust swarms and adaptive aggregation of swarms. We identify an influencing bias in the spatial distribution of agents compared to a well-mixed distribution and two features, percentage of aligned swarm members and neighborhood size, that allow us to model the time variance of feedbacks. We report an urn model that is capable of qualitatively representing all these relevant features. The increase in neighborhood sizes over time enables the swarm to lock in a highly aligned state but also allows for infrequent switching between lock-in states. We report similar occurrences of time-variant feedback in a second collective system to indicate the potential for generality of this phenomenon. Our study is concluded by applications of methods from renormalization group theory that allow us to focus on the neighborhood dynamics as scale transformations. Correlation lengths and critical exponents are determined empirically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Naturally, the definition of order is ambiguous. Here, we say that a uniform distribution of agents in space is an unordered state.

  2. A fly bottle is a traditional device made of clear glass to passively trap flying insects that enter it from below and cannot escape because of their phototaxis behavior.

  3. In terms of the actual implementation, real distances are represented by a fine-grained histogram.

References

  • Amit, D. J. (1984). Field theory, the renormalization group and critical phenomena. River Edge, NJ: World Scientific Publishing.

    Google Scholar 

  • Arnold, L. (2003). Random dynamical systems. Berlin: Springer.

    Google Scholar 

  • Arthur, W. B. (1989). Competing technologies, increasing returns, and lock-in by historical events. The Economic Journal, 99(394), 116–131.

    Article  Google Scholar 

  • Arvin, F., Turgut, A. E., Bazyari, F., Arikan, K. B., Bellotto, N., & Yue, S. (2014). Cue-based aggregation with a mobile robot swarm: A novel fuzzy-based method. Adaptive Behavior, 22(3), 189–206.

    Article  Google Scholar 

  • Arvin, F., Turgut, A. E., & Yue, S. (2012). Fuzzy-based aggregation with a mobile robot swarm. In Swarm intelligence (ANTS’12), volume 7461 of lecture notes in computer science (pp. 346–347). Berlin: Springer.

  • Bodi, M., Thenius, R., Szopek, M., Schmickl, T., & Crailsheim, K. (2011). Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Mathematical and Computer Modelling of Dynamical Systems, 18, 87–101.

    Article  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.

    MATH  Google Scholar 

  • Buhl, J., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., et al. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406.

    Article  Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organizing biological systems. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433, 513–516.

    Article  Google Scholar 

  • Crick, F. (1970). Diffusion in embryogenesis. Nature, 225(5231), 420–422.

    Article  Google Scholar 

  • Czirók, A., Barabási, A.-L., & Vicsek, T. (1999). Collective motion of self-propelled particles: Kinetic phase transition in one dimension. Physical Review Letters, 82(1), 209–212.

    Article  Google Scholar 

  • Dussutour, A., Beekman, M., Nicolis, S. C., & Meyer, B. (2009). Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society London B, 276, 4353–4361.

    Article  Google Scholar 

  • Fisher, M. E. (1998). Renormalization group theory: Its basis and formulation in statistical physics. Reviews of Modern Physics, 70(2), 653–681.

    Article  MathSciNet  MATH  Google Scholar 

  • Galam, S. (1997). Rational group decision making: A random field Ising model at \(\text{ T }=0\). Physica A, 238(1–4), 66–80.

    Article  Google Scholar 

  • Galam, S. (2000). Real space renormalization group and totalitarian paradox of majority rule voting. Physica A: Statistical Mechanics and its Applications, 285(1–2), 66–76.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamann, H. (2010). Space-time continuous models of swarm robotics systems: Supporting global-to-local programming. Berlin: Springer.

    Book  Google Scholar 

  • Hamann, H. (2012). Towards swarm calculus: Universal properties of swarm performance and collective decisions. In M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. P. Engelbrecht, R. Groß, & T. Stützle (Eds.), Swarm intelligence: 8th International conference, ANTS 2012, volume 7461 of LNCS (pp. 168–179). Berlin: Springer-Verlag.

  • Hamann, H. (2013). A reductionist approach to hypothesis-catching for the analysis of self-organizing decision-making systems. In 7th IEEE international conference on self-adaptive and self-organizing systems (SASO 2013), (pp. 227–236). IEEE Press.

  • Hamann, H. (2013). Towards swarm calculus: Urn models of collective decisions and universal properties of swarm performance. Swarm Intelligence, 7(2–3), 145–172.

    Article  Google Scholar 

  • Hamann, H., Meyer, B., Schmickl, T., & Crailsheim, K. (2010). A model of symmetry breaking in collective decision-making. In S. Doncieux, B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, & J.-B. Mouret (Eds.), From animals to animats 11, volume 6226 of lecture notes in artificial intelligence (pp. 639–648). Berlin: Springer.

    Google Scholar 

  • Hamann, H., Schmickl, T., & Crailsheim, K. (2013). Analysis of swarm behaviors based on an inversion of the fluctuation theorem. Artificial Life (in press).

  • Hamann, H., Schmickl, T., Wörn, H., & Crailsheim, K. (2012). Analysis of emergent symmetry breaking in collective decision making. Neural Computing & Applications, 21(2), 207–218.

    Article  Google Scholar 

  • Hamann, H., & Valentini, G. (2014). Swarm in a fly bottle: Feedback-based analysis of self-organizing temporary lock-ins. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. M. de Oca, C. Solnon, & T. Stützle (Eds.), Ninth international conference on swarm intelligence (ANTS 2014), volume 8667 of LNCS (pp. 170–181). Springer, Berlin.

  • Hamann, H., Valentini, G., Khaluf, Y., & Dorigo, M. (2014). Derivation of a micro–macro link for collective decision-making systems: Uncover network features based on drift measurements. In T. Bartz-Beielstein (Ed.), 13th International conference on parallel problem solving from nature (PPSN 2014), volume 8672 of LNCS (pp. 181–190). Springer, Berlin.

  • Hereford, J. M. (2011). Analysis of BEECLUST swarm algorithm. In Proceedings of the IEEE symposium on swarm intelligence (SIS 2011), (pp. 192–198). IEEE.

  • Huepe, C., Zschaler, G., Do, A.-L., & Gross, T. (2011). Adaptive-network models of swarm dynamics. New Journal of Physics, 13(7), 073022.

    Article  Google Scholar 

  • Jeanson, R., Deneubourg, J.-L., Grimal, A., & Theraulaz, G. (2004). Modulation of individual behavior and collective decision-making during aggregation site selection by the ant messor barbarus. Behavioral Ecology and Sociobiology, 55, 388–394.

    Article  Google Scholar 

  • Kadanoff, L. P. (1966). Scaling laws for Ising models near \({T}_c\). Physics, 2(6), 263–272.

    MathSciNet  Google Scholar 

  • Kernbach, S., Thenius, R., Kornienko, O., & Schmickl, T. (2009). Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic swarm. Adaptive Behavior, 17, 237–259.

    Article  Google Scholar 

  • Montes de Oca, M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Majority-rule opinion dynamics with differential latency: A mechanism for self-organized collective decision-making. Swarm Intelligence, 5(3–4), 305–327.

    Article  Google Scholar 

  • Nicolis, S. C., & Dussutour, A. (2008). Self-organization, collective decision making and source exploitation strategies in social insects. The European Physical Journal B, 65, 379–385.

    Article  Google Scholar 

  • Noy-Meir, I. (1975). Stability of grazing systems: An application of predator-prey graphs. The Journal of Ecology, 63, 459–481.

  • Schmickl, T., & Hamann, H. (2011). BEECLUST: A swarm algorithm derived from honeybees. In Y. Xiao (Ed.), Bio-inspired computing and communication networks. Boca Raton: CRC Press.

    Google Scholar 

  • Schmickl, T., Hamann, H., Wörn, H., & Crailsheim, K. (2009). Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Robotics and Autonomous Systems, 57(9), 913–921.

    Article  Google Scholar 

  • Schmickl, T., Thenius, R., Möslinger, C., Radspieler, G., Kernbach, S., & Crailsheim, K. (2008). Get in touch: Cooperative decision making based on robot-to-robot collisions. Autonomous Agents and Multi-Agent Systems, 18(1), 133–155.

    Article  Google Scholar 

  • Sornette, D. (2006). Critical phenomena in natural sciences: Chaos, fractals, selforganization and disorder: Concepts and tools. Berlin: Springer.

    Google Scholar 

  • Szopek, M., Radspieler, G., Schmickl, T., Thenius, R., & Crailsheim, K. (2008). Recording and tracking of locomotion and clustering behavior in young honeybees (Apis mellifera). In A. J. Spink, M. R. Ballintijn, N. D. Bogers, F. Grieco, L. W. S. Loijens, L. P. J. J. Noldus, G. Smit, & P. H. Zimmerman (Eds.), Proceedings of measuring behavior 2008 (p. 327).

  • Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., & Crailsheim, K. (2013). Dynamics of collective decision making of honeybees in complex temperature fields. PLoS ONE, 8(10), e76250.

    Article  Google Scholar 

  • Valentini, G., Hamann, H., & Dorigo, M. (2014). Self-organized collective decision making: The weighted voter model. In Lomuscio, A., Scerri, P., Bazzan, A., & Huhns, M., (Eds.), Proceedings of the 13th international conference on autonomous agents and multiagent systems, AAMAS ’14, (pp. 45–52). International Foundation for Autonomous Agents and Multiagent Systems.

  • Yates, C. A., Erban, R., Escudero, C., Couzin, I. D., Buhl, J., Kevrekidis, I. G., et al. (2009). Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences USA, 106(14), 5464–5469.

    Article  Google Scholar 

  • Young, A., & Stinchcombe, R. (1975). A renormalization group theory for percolation problems. Journal of Physics C: Solid State Physics, 8(23), L535–L540.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Research Council through the ERC Advanced Grant ‘E-SWARM: Engineering Swarm Intelligence Systems’ (Contract 246939) and the EU-H2020 project ‘florarobotica,’ No. 640959. Thanks to Yara Khaluf for helpful comments of an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hamann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valentini, G., Hamann, H. Time-variant feedback processes in collective decision-making systems: influence and effect of dynamic neighborhood sizes. Swarm Intell 9, 153–176 (2015). https://doi.org/10.1007/s11721-015-0108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-015-0108-8

Keywords

Navigation