Skip to main content
Log in

A concise review about fracture assessments of brittle solids with V-notches

  • Review
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

A concise review of recent studies about the fracture assessments of elastic brittle solid materials containing V-notches is presented. In this preliminary and brief survey, elastic stress distributions in V-notched solids are discussed first. The concept of notch stress intensity factor is introduced. Combine the digital image correlation method with numerical computation techniques to analyze the stress distribution near the notches. Fracture criteria such as strain energy density, J-integral, theory of critical distance are used.

However, various new materials are developed in different engineering fields, thus, the establishment of reliable and accurate material strength theory or failure criterion is imperative. Therefore, predicting fracture for various modern materials would require more experiments to infer material dependent parameters in the local fracture model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanninen M F, Popelar C H. Advanced Fracture Mechanics. Oxford: Oxford University Press, 1985

    MATH  Google Scholar 

  2. Broek D. The Practical Use of Fracture Mechanics. Netherlands: Kluwer Academic Publishers, 1989

    Book  Google Scholar 

  3. Taylor D. The Theory of Critical Distances. Amsterdam: Elsevier, 2007

    Google Scholar 

  4. Anderson T L. Fracture Mechanics. London: Taylor & Francis, 2005

    Book  MATH  Google Scholar 

  5. Savruk M P, Kazberuk A. Two-dimensional fracture mechanics problems for solids with sharp and rounded V-notches. International Journal of Fracture, 2010, 161(1): 79–95

    Article  MATH  Google Scholar 

  6. Wieghardt K. Uber das Spalten und Zerreiben elastischer Koper. Mathematics and Physics, 1907, 55(2): 60–103

    MATH  Google Scholar 

  7. Brahtz J H A. Stress distribution in a reentrant corner. Trans ASME, 1933a,55: 31–37

    Google Scholar 

  8. Brehtz J H A. Stress distribution in wedges with arbitrary boundary forces. Journal of Applied Physics, 1933b,4(2): 56–65

    Google Scholar 

  9. Williams M L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension. Journal of Applied Mechanics, 1952, 19(4): 526–530

    Google Scholar 

  10. Karal F C J, Karp S N. The elastic field behavior in the neighborhood of a crack of arbitrary angle. Communications on Pure and Applied Mathematics, 1962, 15(4): 413–421

    Article  MathSciNet  MATH  Google Scholar 

  11. Kalandiya A I. Remarks on the singularity of elastic solutions near corners. Journal of Applied Mathematics and Mechanics, 1969, 33 (1): 127–131

    Article  MATH  Google Scholar 

  12. Rösel R. On the wedge/notch eigenvalue. International Journal of Fracture, 1987, 33(1): 61–71

    Article  Google Scholar 

  13. Vasilopoulos D. On the determination of higher order terms of singular elastic stress fields near corner. Numerische Mathematik, 1988, 53(1-2): 51–95

    Article  MathSciNet  MATH  Google Scholar 

  14. Savruk M P, Osiv P N, Prokopchuk I V. Numerical Analysis in Plane Problems of the Crack Theory. Russia: Naukova Dumka Kiev, 1989

    Google Scholar 

  15. Seweryn A, Molski K. Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions. Engineering Fracture Mechanics, 1996, 55(4): 529–556

    Article  Google Scholar 

  16. Mori K. Tension of a semi-infinite plate with a circular hole connected to the straight edge by a slit. Bulletin of the JSME, 1964, 7(26): 272–277

    Article  Google Scholar 

  17. Zappalorto M, Lazzarin P. In-plane and out-of-plane stress field solutions for V-notches with end holes. International Journal of Fracture, 2011, 168(2): 167–180

    Article  MATH  Google Scholar 

  18. Neuber H. Finite element analysis of corner point displacements and stress intensity factors for narrow notches in square sheets and plates. Fatigue & Fracture of Engineering Materials & Structures, 1985, 24: 979–992

    Google Scholar 

  19. Kullmer G. Elastic stress fields in the vicinity of a narrow notch with circular root. In: Reliability and structural integrity of advanced materials, Proceedings of the 9th biennial European conference on fracture. Varna: Bulgaria, 1992,905–910

    Google Scholar 

  20. Radaj D, Lehrke H P, Greuling S. Theoretical fatigue-effective notch stresses at spot welds. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24(5): 293–308

    Article  Google Scholar 

  21. Smith E. The mode-III elastic stress distribution near the root of (a) an intrusion-type notch and (b) a keyhole notch. Int J Engng Sci, 44: 340–344

  22. Kullmer G, Richard H A. Influence of the root radius of crack-like notches on the fracture load of brittle components. Archive of Applied Mechanics, 2006, 76(11–12): 711–723

    Article  MATH  Google Scholar 

  23. Creager M, Paris P C. Elastic field equations for blunt cracks with reference to stress corrosion cracking. International Journal of Fracture, 1967, 3: 247–252

    Google Scholar 

  24. Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity. 4th ed. Leyden: Noordhoff International Publishing, 1977

    Book  Google Scholar 

  25. Benthem J P. Stresses in the region of rounded corners. International Journal of Solids and Structures, 1987, 23(2): 239–252

    Article  Google Scholar 

  26. Lazzarin P, Zappalorto M, Berto F. Generalised stress intensity factors for rounded notches in plates under in-plane shear loading. International Journal of Fracture, 2011, 170(2): 123–144

    Article  MATH  Google Scholar 

  27. Gross R, Mendelson A. Plane elastostatic analysis of V-notched plates. International Journal of Fracture, 1972, 8(3): 267–276

    Article  Google Scholar 

  28. Zhao Z, Hahn H G. Determining the SIF of a V-notch from the results of a mixed-mode crack. Engineering Fracture Mechanics, 1992, 43(4): 511–518

    Article  Google Scholar 

  29. Chen D H. Stress intensity factors for V-notched strip under tension or in-plane bending. International Journal of Fracture, 1995, 70(1): 81–97

    Article  Google Scholar 

  30. Dunn M L, Suwito W, Cunningham S. Fracture initiation at sharp notches: correlation using critical stress intensities. International Journal of Fracture, 1997, 34: 3873–3883

    MATH  Google Scholar 

  31. Dunn M L, Suwito W, Cunningham S, May C W. Fracture initiation at sharp notches under mode-I, mode-II, and mild mixed mode loading. International Journal of Fracture, 1997, 84(4): 367–381

    Article  Google Scholar 

  32. Lazzarin P, Tovo R. A notch intensity approach to the stress analysis of welds. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(9): 1089–1103

    Article  Google Scholar 

  33. Strandberg M. A numerical study of the elastic stress field arising from sharp and blunt V-notches in a SENT-specimen. International Journal of Fracture, 2000, 100(4): 329–342

    Article  Google Scholar 

  34. Strandberg M. Upper bounds for the notch intensity factor for some geometries and their use in general interpolation formulae. Engineering Fracture Mechanics, 2001, 68(5): 577–585

    Article  Google Scholar 

  35. Noda N, Takase Y. Generalized stress intensity factors for Vshaped notch in a round bar under torsion, tension and bending. Engineering Fracture Mechanics, 2003, 70(11): 1447–1466

    Article  Google Scholar 

  36. Zappalorto M, Lazzarin P, Berto F. Elastic notch stress intensity factors for sharply V-notched rounded bars under torsion. Engineering Fracture Mechanics, 2009, 76(3): 439–453

    Article  Google Scholar 

  37. Knésl Z. A criterion of V-notch stability. International Journal of Fracture, 1991, 48: 79–83

    Article  Google Scholar 

  38. Nui L S, Chehimi C, Pluvinage G. Stress field near a large blunted tip V-notch and application of the concept of the critical notch stress intensity factor (NSIF) to the fracture toughness of very brittle materials. Engineering Fracture Mechanics, 1994, 49(3): 325–335

    Article  Google Scholar 

  39. Gogotsi G A. Fracture toughness of ceramics and ceramic composites. Ceramics International, 2003, 29(7): 777–784

    Article  Google Scholar 

  40. Gómez F J, Elices M. A fracture criterion for sharp V-notched samples. International Journal of Fracture, 2003, 123(3-4): 163–175

    Article  Google Scholar 

  41. Gómez F J, Elices M. A fracture criterion for blunted V-notched samples. International Journal of Fracture, 2004, 127(3): 239–264

    Article  MATH  Google Scholar 

  42. Gómez F J, Elices M, Berto F, Lazzarin P. A generalised notch stress intensity factor for U-notched components loaded under mixed mode. Engineering Fracture Mechanics, 2008, 75(16): 4819–4833

    Article  Google Scholar 

  43. Gómez F J, Elices M, Berto F, Lazzarin P. Fracture of V-notched specimens under mixed mode (I + II) loading in brittle materials. International Journal of Fracture, 2009, 159(2): 121–135

    Article  Google Scholar 

  44. Boukharouba T, Tamine T, Nui L L, Chehimi C, Pluvinage G. The use of notch stress intensity factor as a fatigue crack initiation parameter. Engineering Fracture Mechanics, 1995, 52(3): 503–513

    Article  Google Scholar 

  45. Verreman Y, Nie B. Early development of fatigue cracking at manual fillet welds. Fatigue & Fracture of Engineering Materials & Structures, 1996, 19(6): 669–681

    Article  Google Scholar 

  46. Gómez F J, Elices M. Fracture loads for ceramic samples with rounded notches. Engineering Fracture Mechanics, 2006, 73(7): 880–894

    Article  Google Scholar 

  47. Ayatollahi M R, Torabi A R. Investigation of mixed mode brittle failure in rounded-tip V-notches components. Engineering Fracture Mechanics, 2010, 77(16): 3087–3104

    Article  Google Scholar 

  48. Lazzarin P, Filippi S. A generalized stress intensity factor to be applied to rounded V-shaped notches. International Journal of Solids and Structures, 2006, 43(9): 2461–2478

    Article  MATH  Google Scholar 

  49. Ayatollahi M R, Torabi A R, Azizi P. Experimental and theoretical assessment of brittle fracture in engineering components containing a sharp V-notch. Experimental Mechanics, 2011, 51(6): 919–932

    Article  Google Scholar 

  50. Carpinteri A. Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners. Engineering Fracture Mechanics, 1987, 26(1): 143–155

    Article  Google Scholar 

  51. Dini D, Hills D. Asymptotic characterization of nearly sharp notch root stress fields. International Journal of Fracture, 2004, 130(3): 651–666

    Article  MATH  Google Scholar 

  52. Taylor D. Predicting the fracture strength of ceramic materials using the theory of critical distances. Engineering Fracture Mechanics, 2004, 71(16–17): 2407–2416

    Article  Google Scholar 

  53. Seweryn A. Brittle fracture criterion for structures with sharp notches. Engineering Fracture Mechanics, 1994, 47(5): 673–681

    Article  Google Scholar 

  54. Dunn M L, Suwito W, Cunningham S. Stress intensities at notch singularities. Engineering Fracture Mechanics, 1997, 57(4): 417–430

    Article  MATH  Google Scholar 

  55. Lazzarin P, Zambardi R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp Vshaped notches. International Journal of Fracture, 2001, 112(3): 275–298

    Article  Google Scholar 

  56. Livieri P. A new path independent integral applied to notched components under mode I loadings. International Journal of Fracture, 2003, 123(3-4): 107–125

    Article  Google Scholar 

  57. Leguillon D, Yosibash Z. Crack onset at a V-notch influence of the notch tip radius. International Journal of Fracture, 2003, 122(1-2): 1–21

    Article  Google Scholar 

  58. Ayatollahi M R, Torabi A R. Brittle fracture in rounded-tip Vshaped notches. Materials & Design, 2010, 31(1): 60–67

    Article  Google Scholar 

  59. Dunn M L, Suwito W, Cunningham S, May C. Fracture initiation at sharp notches under mode-I, mode-II, and mild mixed mode loading. International Journal of Fracture, 1997, 84(4): 367–381

    Article  Google Scholar 

  60. Seweryn A, Mróz Z. A non-local stress failure condition for structural elements under multiaxial loading. Engineering Fracture Mechanics, 1995, 51(6): 955–973

    Article  Google Scholar 

  61. Seweryn A, Lukaszewicz A. Verification of brittle fracture criteria for elements with V-shaped notches. Engineering Fracture Mechanics, 2002, 69(13): 1487–1510

    Article  Google Scholar 

  62. Priel E, Bussiba A, Gilad A, Yosibash Z. Mixed mode failure criteria for brittle elastic V-notched structures. International Journal of Fracture, 2007, 144(4): 247–265

    Article  MATH  Google Scholar 

  63. Hutchinson J W, Suo Z. Advances in Experimental Mechanics. San Diego: Academic, 1996,64–187

    Google Scholar 

  64. Erdogan F, Sih G. On the crack extension in plates under plane loading and transverse shear. J Basic Eng, 1963, 85(4): 519–525

    Article  Google Scholar 

  65. Papadopoulos G A, Paniridis P I. Crack initiation from blunt notches under biaxial loading. Engineering Fracture Mechanics, 1988, 31(1): 65–78

    Article  Google Scholar 

  66. Leguillon D. Strength or toughness? A criterion for crack onset at a notch. European Journal of Mechanics/A Solids, 2002, 21: 61–72

    Article  MATH  Google Scholar 

  67. Berto F, Lazzarin P, Radaj D. Fictitious notch rounding concept applied to sharp V-notches: evaluation of the microstructural support factor for different failure hypotheses. Engineering Fracture Mechanics, 2009, 76(9): 1151–1175

    Article  Google Scholar 

  68. Sih G C, Ho J W. Sharp notch fracture strength characterized by critical energy density. Theoretical and Applied Fracture Mechanics, 1991, 16(3): 179–214

    Article  Google Scholar 

  69. Berto F, Lazzarin P, Matvienko Y G. J-integral evaluation for Uand V-blunt notches under Mode I loading and materials obeying a power hardening law. International Journal of Fracture, 2007, 146 (1–2): 33–51

    Article  MATH  Google Scholar 

  70. Elices M, Guinea G V, Gomez F J, Planas J. The cohesive zone model: advantages, limitations and challenges. Engineering Fracture Mechanics, 2002, 69(2): 137–163

    Article  Google Scholar 

  71. Gómez F J, Guinea G V, Elices M. Failure criteria for linear elastic materials with U-notches. International Journal of Fracture, 2006, 141(1–2): 99–113

    Article  MATH  Google Scholar 

  72. Atzori B, Lazzarin P, Meneghetti G. Fracture mechanics and notch sensitivity. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(3): 257–267

    Article  Google Scholar 

  73. Ayatollahi M R, Torabi A R. Determination of mode II fracture toughness for U-shaped notches using Brazilian disc specimen. International Journal of Solids and Structures, 2010, 47(3–4): 454–465

    Article  MATH  Google Scholar 

  74. Berto F, Elices M, Lazzarin P, Zappalorto M. Fracture behavior of notched round bars made of PMMA subjected to torsion at room temperature. Engineering Fracture Mechanics, 2012, 90: 143–160

    Article  Google Scholar 

  75. Berto F, Cendon D A, Lazzarin P, Elices M. Fracture behaviour of notched round bars made of PMMA subjected to torsion at–60°C. Engineering Fracture Mechanics, 2013, 102: 271–287

    Article  Google Scholar 

  76. Lomakin E V, Zobnin A I, Berezin A V. Finding the fracture toughness characteristics of graphite materials in plane strain. Strength of Materials, 1975, 7(4): 484–487

    Article  Google Scholar 

  77. Sato S, Kawamata K, Awaji H, Osawa M, Manaka M. Thermal shock resistance and fracture toughness during the graphitization process. Carbon, 1981, 19(2): 111–118

    Article  Google Scholar 

  78. Yamauchi Y, Nakano M, Kishida K, Okabe T. Measurement of mixed mode fracture toughness for brittle materials using edgenotched half-disk specimen. J of the Society of Material Science, 2001, 50: 224–229.

    Google Scholar 

  79. Nakhodchi S, Smith D J, Flewitt P E J. The formation of fracture process zones in polygranular graphite as a precursor to fracture. Journal of Materials Science, 2013, 48(2): 720–732

    Article  Google Scholar 

  80. Bazaj D K, Cox E E. Stress concentration factors and notch sensitivity of graphite. Carbon, 1969, 7(6): 689–697

    Article  Google Scholar 

  81. Kawakami H. Notch sensitivity of graphite materials for VHTR. The Atomic Energy Society of Japan, 1985, 27 (4): 357–364.

    Article  Google Scholar 

  82. Ayatollahi M R, Torabi A R. Tensile fracture in notched polycrystalline graphite specimens. Carbon, 2010, 48(8): 2255–2265

    Article  Google Scholar 

  83. Torabi A R, Berto F. Strain energy density to assess Mode-II fracture in U-notched disk-type graphite plates. International Journal of Damage Mechanics, 2014, 23(7): 917–930

    Article  Google Scholar 

  84. Torabi A R, Pirhadi E. Stress based criteria for brittle fracture in key-hole notches under mixed mode loading. European Journal of Mechanics/A Solids, 2015, 49: 1–12

    Article  MATH  Google Scholar 

  85. Torabi A R, Amininejad S H. Brittle fracture in V-notches with end holes. International Journal of Damage Mechanics, 2015, 24(4): 529–545

    Article  Google Scholar 

  86. Torabi A R, Campagnolo A, Berto F. Experimental and theoretical investigation of brittle fracture in key-hole notches under mixed mode I/II loading. Acta Mechanica, 2015, 226(7): 2313–2322

    Article  Google Scholar 

  87. Neuber H. Theory of Notch Stresses: Principles for Exact Calculation of Strength with Reference to Structural Form and Material. Berlin: Springer-Verlag, 1958

    Google Scholar 

  88. Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 1968, 35(2): 379–386

    Article  Google Scholar 

  89. Atluri S N. Computational Methods in the Mechanics of Fracture. Amsterdam: North Holland, 1986

  90. Berto F, Lazzarin P. Relationships between J-integral and the strain energy evaluated in a finite volume surrounding the tip of sharp and blunt V-notches. International Journal of Solids and Structures, 2007, 44(14–15): 4621–4645

    Article  MATH  Google Scholar 

  91. Barati E, Alizadeh Y, Aghazadeh J, Berto F. Some new practical equations for rapid calculation of J-integral in plates weakened by U-notches under bending. Materials & Design, 2010, 31(6): 2964–2971

    Article  Google Scholar 

  92. Sutton M, Wolters W, Peters W, Ranson W, McNeill S. Determination of displacements using an improved digital correlation method. Image and Vision Computing, 1983, 1(3): 133–139

    Article  Google Scholar 

  93. Wells A A. Unstable crack propagation in metals: cleavage and fast fracture. Crack Propag Symp, 1961, 1: 210–230

    Google Scholar 

  94. Williams M L. On the stress distribution at the base of stationary crack. Journal of Applied Mechanics, 1957, 24: 109–114

    MathSciNet  MATH  Google Scholar 

  95. Becker T H, Mostafavi M, Tait R B, Marrow T J. An approach to calculate the J-integral by digital image correlation displacement field measurment. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35(10): 971–984

    Article  Google Scholar 

  96. Meneghetti G, Campagnolo A, Berto F, Atzori B. Averaged strain energy density evaluated rapidly from the singular peak stresses by FEM: cracked components under mixed-mode (I + II) loading. Theoretical and Applied Fracture Mechanics, 2015, 79: 113–124

    Article  Google Scholar 

  97. Akin J E. The generation of elements with singularities. International Journal for Numerical Methods in Engineering, 1976, 10(6): 1249–1259

    Article  MathSciNet  MATH  Google Scholar 

  98. Portela A, Aliabadi M H, Rooke D P. Efficient boundary element analysis of sharp notched plates. International Journal for Numerical Methods in Engineering, 1991, 32(3): 445–470

    Article  MATH  Google Scholar 

  99. Tracey D M. Finite element for determination of crack tip elastic stress intensity factors. Engineering Fracture Mechanics, 1971, 3 (3): 255–265

    Article  Google Scholar 

  100. Pu S L, Hussain M A, Lorensen W E. The collapsed cubic isoparametric element as a singular element for crack problems. International Journal for Numerical Methods in Engineering, 1978, 12(11): 1727–1742

    Article  MATH  Google Scholar 

  101. Benzley S E. Representation of singularities with iso-parametric finite elements. International Journal for Numerical Methods in Engineering, 1974, 8(3): 537–545

    Article  MATH  Google Scholar 

  102. Heyliger P R, Kriz R D. Stress intensity factors by enriched mixed finite elements. International Journal for Numerical Methods in Engineering, 1989, 28(6): 1461–1473

    Article  MATH  Google Scholar 

  103. Givoli D, Rivkin L. The DtN finite element method for elastic domains with cracks and re-entrant corners. Computers & Structures, 1993, 49(4): 633–642

    Article  MATH  Google Scholar 

  104. Sheppard S D. Field effects in fatigue crack initiation: long life fatigue strength. Journal of Mechanical Design, 1991, 113(2): 188

    Article  Google Scholar 

  105. Sih G C. Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture, 1974, 10(3): 305–321

    Article  Google Scholar 

  106. Sih G C. Mechanics of Fracture Initiation and Propagation. Dordrecht: Springer, 1991

    Book  Google Scholar 

  107. Gdoutos E E. Fracture Mechanics Criteria and Applications. Dordrecht: Springer, 1990

    Book  MATH  Google Scholar 

  108. Hensel J, Nitschke-Pagel T, Tchoffo Ngoula D, Beier H T, Tchuindjang D, Zerbst U. Welding residual stresses as needed for the prediction of fatigue crack propagation and fatigue strength. Engineering Fracture Mechanics, 2018, 198: 123–141

    Article  Google Scholar 

  109. Song S, Dong P. Residual stresses at weld repairs and effects of repair geometry. Science and Technology of Welding and Joining, 2017, 22(4): 265–277

    Article  Google Scholar 

  110. Martínez-Pañeda E, Niordson C F. On fracture in finite strain gradient plasticity. International Journal of Plasticity, 2016, 80: 154–167

    Article  Google Scholar 

  111. Pluvinage G. Fatigue and fracture emanating from notch: the use of the notch stress intensity factio. Nuclear Engineering and Design, 1998, 185(2–3): 173–184

    Article  Google Scholar 

  112. Peterson R E. Notch sensitivity. In: Sines G, Waisman JL, eds. Metal Fatigue. New York: McGraw Hill, 1959,293–306

    Google Scholar 

  113. Ibáñez-Gutiérrez F T, Cicero S. Fracture assessment of notched short glass fiber reinforced polyamide 6: an approach from failure assessment diagrams and the theory of critical distances. Composites Part B: Engineering, 2017, 111: 124–133

    Article  Google Scholar 

  114. Jones R M. Mechanics of Composite Materials. New York: Hemisphere, 1975

    Google Scholar 

  115. Tsai S W, Wu E M. A general theory of strength for anisotropic materials. Journal of Composite Materials, 1971, 5(1): 58–80

    Article  Google Scholar 

  116. Kim C H, Yeh H Y. Development of a new yielding criterion: the Yeh-Stratton criterion. Engineering Fracture Mechanics, 1994, 47 (4): 569–582

    Article  Google Scholar 

  117. Yeh H Y, Kim C H. The Yeh-Stratton criterion for composite materials. Journal of Composite Materials, 1994, 28(10): 926–939

    Article  Google Scholar 

  118. Zhang R, Wang Z H, Zhang Q. Biaxial strength of glass fabric reinforced polyester. In: Proc Eighth Int Conf Compoite materials. 1991

    Google Scholar 

  119. Andreev G E. Brittle Failure of Rock Materials: Test Results and Constitutive Models. Rotterdam: Balkema, 1995

    Google Scholar 

  120. Hoek E, Brown E T. Underground Excavations in Rock. London: Institute of Mining and Metallurgy, 1980

    Google Scholar 

  121. Hoek E, Brown E T. Empirical strength criterion for rock mass. J Geotech Eng, 1980, 106: 1013–1035

    Google Scholar 

  122. Zuo J P, Li H T, Xie H P, Yang J, Peng S P. A nonlinear strength criterion for rock-like materials based on fracture mechanics. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(4): 594–599

    Article  Google Scholar 

  123. Peterson M S, Wong T F. Experimental Rock Deformation - The Brittle Field. Berlin: Springer, 2005

    Google Scholar 

  124. Jaeger J C, Cook N G W, Zimmerman R W. Fundamentals of Rock Mechanics, 4th ed. Oxford: Blackwell, 2007

    Google Scholar 

  125. Zuo J P, Liu H H, Li H T. A theoretical derivation of the Hoek-Brown failure criterion for rock. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(4): 361–366

    Article  Google Scholar 

  126. Berto F, Campagnolo A, Pook L P. Three-dimensional effects on cracked components under anti-plane loading. Frattura Ed Integrità Strutturale, 2015, 33: 17–24

    Article  Google Scholar 

  127. Campagnolo A, Berto F, Pook L P, Three-dimensional effects on cracked discs and plates under nominal Mode-III loading. Frattura Ed Integrità Strutturale, 2015, 34: 190–199

    Google Scholar 

  128. Kotousov A, Lazzarin P, Berto F, Pook L P. Three-dimensional stress states at crack tip induced by shear and anti-plane loading. Engineering Fracture Mechanics, 2013, 108: 65–74

    Article  Google Scholar 

  129. Pook L P. A 50-year retrospective review of three-dimensional effects at cracks and sharp notches. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(8): 699–723

    Article  Google Scholar 

  130. Lazzarin P, Campagnolo A, Berto F. A comparison among some recent energy- and stress-based criteria for the fracture assessment of sharp V-notched components under Mode-I loading. Theoretical and Applied Fracture Mechanics, 2014, 71: 21–30

    Article  Google Scholar 

  131. Carpinteri A, Cornetti P, Pugno N, Sapora A, Taylor D. A finite fracture mechanics approach to structures with sharp V-notches. Engineering Fracture Mechanics, 2008, 75(7): 1736–1752

    Article  Google Scholar 

  132. Goyal R, Glinka G. Fracture mechanics-based estimation of fatigue lives of welded joints. Welding in the World, 2013, 57(5): 625–634

    Article  Google Scholar 

  133. Lindroth P, Marquis G, Glinka G. Fatigue crack growth of arbitrary planar cracks in welded components. Welding in the World, 2013, 57: 425–435

    Google Scholar 

  134. Mikheevskiy S, Glinka G, Cordes T. Total life approach for fatigue life estimation of welded structures. Procedia Engineering, 2015, 101: 177–184

    Article  Google Scholar 

  135. Correia J A F O, Huffman P J, De Jesus A M P, Cicero S, Fernandez-Canteli A, Berto F, Glinka G. Unified two-stage fatigue methodology based on a probabilistic damage model applied to structural details. Theoretical and Applied Fracture Mechanics, 2017, 92: 252–265

    Article  Google Scholar 

  136. Goyal R, Bogdanov S, El-zein M, Glinka G. Fracture mechanics based estimation of fatigue lives of laser welded joints. Engineering Failure Analysis, 2018, 93: 340–355

    Article  Google Scholar 

  137. Irwin G R. Fracture mechanics. In: Goodier J N, Hoff N J, eds. Structural Mechanics. New York: Pergamon Press, 1960, 557–591

    Google Scholar 

Download references

Acknowledgements

The support of literature search provided by the Tongji University Library is deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsien-Yang Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, HY., Yang, B. A concise review about fracture assessments of brittle solids with V-notches. Front. Struct. Civ. Eng. 13, 478–485 (2019). https://doi.org/10.1007/s11709-019-0520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-019-0520-z

Keywords

Navigation