Skip to main content

Advertisement

Log in

Boosting energy density for Zn-ion hybrid capacitors by engineering chitin-derived carbon in molten salt

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn-ion hybrid capacitors (ZIHCs) have been deemed a promising candidate for energy storage equipment to overcome the primary drawback of supercapacitors—low energy density. Herein, inspired by the laminated structure of chitin fibrils, molten salt strategy is proposed to engineer functional carbon as cathode material for ZIHCs, for the first time. Orthogonal design was adopted to ascertain the optimum synthetic conditions for the chitin-derived NaCl-templated and NaNO3-activated carbons (CNNs). The resultant C2NN1-800-1-5 possesses high surface area of 1256 m2 g−1 and rich surface heteroatom content of 11.3 at%, as well as numerous thin intertwined nanofibre bundles. Associated with the synergy of surface capacitive reaction and diffusion battery behavior, the Zn//ZnSO4 (aq, 2 M)//C2NN1-800-1-5 ZIHC can be conducted in a relatively broad potential window ranging from 0 to 1.8 V and manifests remarkable energy density of 133.4 Wh kg−1 at 180 W kg−1. Moreover, charge/discharge cycling further revealed that this device can retain 100% of its initial capacity, together with almost 100% coulombic efficiency after 10,000 cycles at 6 A g−1. The study emphasizes the green synthesis of heteroatom-doped hierarchical porous carbon cathode material, notably facilitating the rapidly increasing popularity of Zn-ion hybrid energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L. Ling, Y. Bai, Z. Wang et al., ACS Appl. Mater. Interfaces. 10, 5560 (2018). https://doi.org/10.1021/acsami.7b17659

    Article  CAS  Google Scholar 

  2. H. Li, J. Chen, B. Yang et al., Electrochim. Acta 299, 163 (2019). https://doi.org/10.1016/j.electacta.2018.12.172

    Article  CAS  Google Scholar 

  3. S. Wu, Y. Chen, T. Jiao et al., Adv. Energy Mater. 9, 1902915 (2019). https://doi.org/10.1002/aenm.201902915

    Article  CAS  Google Scholar 

  4. K. Zhu, T. Wu, K. Huang, ACS Nano 13, 14447 (2019). https://doi.org/10.1021/acsnano.9b08039

    Article  CAS  Google Scholar 

  5. P. Jezowski, O. Crosnier, E. Deunf, P. Poizot, F. Beguin, T. Brousse, Nat. Mater. 17, 167 (2018). https://doi.org/10.1038/nmat5029

    Article  CAS  Google Scholar 

  6. D.D. Li, C. Ye, X.Z. Chen, S.Q. Wang, H.H. Wang, J. Power Sources 382, 116 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.036

    Article  CAS  Google Scholar 

  7. Y. Zheng, W. Zhao, D. Jia et al., Chem. Eng. J. 387, 124161 (2020). https://doi.org/10.1016/j.cej.2020.124161

    Article  CAS  Google Scholar 

  8. J. Wang, Y. Huang, X. Han, Z. Li, S. Zhang, M. Zong, Appl. Surf. Sci. 579, 152247 (2022). https://doi.org/10.1016/j.apsusc.2021.152247

    Article  CAS  Google Scholar 

  9. F. Wei, H. Zhang, J. Wang, J. Zhuang, Y. Lv, J. Alloys Compd. 907, 164536 (2022). https://doi.org/10.1016/j.jallcom.2022.164536

    Article  CAS  Google Scholar 

  10. Y. Li, P. Lu, P. Shang et al., J. Energy Chem. 56, 404 (2021). https://doi.org/10.1016/j.jechem.2020.08.005

    Article  CAS  Google Scholar 

  11. L. Han, X. Zhang, J. Li et al., J. Colloid Interface Sci. 599, 556 (2021). https://doi.org/10.1016/j.jcis.2021.04.114

    Article  CAS  Google Scholar 

  12. J. Li, J. Zhang, L. Yu et al., Energy Storage Mater. 42, 705 (2021). https://doi.org/10.1016/j.ensm.2021.08.018

    Article  Google Scholar 

  13. F. Wei, Y. Wei, J. Wang, M. Han, Y. Lv, Chem. Eng. J. 450, 137919 (2022). https://doi.org/10.1016/j.cej.2022.137919

    Article  CAS  Google Scholar 

  14. P. Dubey, V. Shrivastav, P.H. Maheshwari, S. Sundriyal, Carbon 170, 1 (2020). https://doi.org/10.1016/j.carbon.2020.07.056

    Article  CAS  Google Scholar 

  15. B. van Veenhuyzen, S. Tichapondwa, C. Hörstmann, E. Chirwa, H.G. Brink, J. Hazard. Mater. 416, 125943 (2021). https://doi.org/10.1016/j.jhazmat.2021.125943

    Article  CAS  Google Scholar 

  16. Y. Kado, Y. Soneda, Microporous Mesoporous Mater. 287, 101 (2019). https://doi.org/10.1016/j.micromeso.2019.04.067

    Article  CAS  Google Scholar 

  17. A. Szczurek, G. Amaral-Labat, V. Fierro, A. Pizzi, A. Celzard, Microporous Mesoporous Mater. 196, 8 (2014). https://doi.org/10.1016/j.micromeso.2014.04.051

    Article  CAS  Google Scholar 

  18. J. Ding, P. Wang, S. Ji, H. Wang, V. Linkov, R. Wang, Electrochim. Acta 296, 653 (2019). https://doi.org/10.1016/j.electacta.2018.11.105

    Article  CAS  Google Scholar 

  19. X. Liu, M. Antonietti, Carbon 69, 460 (2014). https://doi.org/10.1016/j.carbon.2013.12.049

    Article  CAS  Google Scholar 

  20. J. Wang, B. Ding, X. Hao et al., Carbon 102, 255 (2016). https://doi.org/10.1016/j.carbon.2016.02.047

    Article  CAS  Google Scholar 

  21. H. Chen, L. Liu, F. Chen, Y. Fan, Q. Yong, Carbohydr. Polym. 283, 119138 (2022). https://doi.org/10.1016/j.carbpol.2022.119138

    Article  CAS  Google Scholar 

  22. Y. Lu, Z. Li, Z. Bai et al., Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132

    Article  CAS  Google Scholar 

  23. A. Sanchez-Sanchez, M.T. Izquierdo, G. Medjahdi, J. Ghanbaja, A. Celzard, V. Fierro, Microporous Mesoporous Mater. 270, 127 (2018). https://doi.org/10.1016/j.micromeso.2018.05.017

    Article  CAS  Google Scholar 

  24. V. Khomenko, E. Raymundo-Piñero, F. Béguin, J. Power Sources 153, 183 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.210

    Article  CAS  Google Scholar 

  25. C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, J. Power Sources 226, 65 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.064

    Article  CAS  Google Scholar 

  26. Q. Yan, C. Shuai, L. Ying et al., Carbohydr Polym 133, 163 (2015)

    Article  Google Scholar 

  27. S. Li, K. Han, J. Li, M. Li, C. Lu, Microporous Mesoporous Mater. 243, 291 (2017). https://doi.org/10.1016/j.micromeso.2017.02.052

    Article  CAS  Google Scholar 

  28. W. Tian, H. Hu, Y. Wang et al., ACS Nano 12, 1990 (2018). https://doi.org/10.1021/acsnano.7b09175

    Article  CAS  Google Scholar 

  29. L. Yang, X. Li, S. He et al., J. Mater. Chem. A 4, 10842 (2016). https://doi.org/10.1039/C6TA03083A

    Article  CAS  Google Scholar 

  30. L. Dong, X. Ma, Y. Li et al., Energy Storage Mater. 13, 96 (2018). https://doi.org/10.1016/j.ensm.2018.01.003

    Article  Google Scholar 

  31. S. Zeng, X. Shi, D. Zheng et al., Mater. Res. Bull. 135, 111134 (2021). https://doi.org/10.1016/j.materresbull.2020.111134

    Article  CAS  Google Scholar 

  32. S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi, J.A. Zapien, J. Mater. Chem. A 7, 7784 (2019). https://doi.org/10.1039/C9TA00733D

    Article  CAS  Google Scholar 

  33. H. Chen, Y. Zheng, X. Zhu et al., Mater. Res. Bull. 139, 111281 (2021). https://doi.org/10.1016/j.materresbull.2021.111281

    Article  CAS  Google Scholar 

  34. J. Yin, W.L. Zhang, W.X. Wang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202001705

    Article  Google Scholar 

  35. H. Liu, H. Chen, K. Shi et al., Ind. Crops Prod. 187, 115519 (2022). https://doi.org/10.1016/j.indcrop.2022.115519

    Article  CAS  Google Scholar 

  36. Y. Liu, H. Tan, Z. Tan, X. Cheng, Appl. Surf. Sci. 608, 155215 (2023). https://doi.org/10.1016/j.apsusc.2022.155215

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Project No. 21406044) and the Zhejiang Province Public Welfare Technology Application Research Project (Grant No. LGF19B060007).

Author information

Authors and Affiliations

Authors

Contributions

HY: Investigation, discussion, writing—draft preparation. XC: Experiment, data analyzing. JZ: Conceptualization, supervision, writing—reviewing and editing. HW: Sample characterization.

Corresponding author

Correspondence to Jie Zhou.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. In this manuscript, we did not collect any samples of human and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Chen, X., Zhou, J. et al. Boosting energy density for Zn-ion hybrid capacitors by engineering chitin-derived carbon in molten salt. J Mater Sci: Mater Electron 34, 675 (2023). https://doi.org/10.1007/s10854-023-09959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09959-7

Navigation