Skip to main content
Log in

Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Uses of layered alkali titanates (A2TinO2n+1; Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L, Sasaki T. Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chemical Reviews, 2014, 114(19): 9455–9486

    Article  Google Scholar 

  2. Ogawa M, Saito K, Sohmiya M. A controlled spatial distribution of functional units in the two dimensional nanospace of layered silicates and titanates. Dalton Transactions (Cambridge, England), 2014, 43(27): 10340–10354

    Article  Google Scholar 

  3. Hong Z, Wei M. Layered titanate nanostructures and their derivatives as negative electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(14): 4403–4414

    Article  Google Scholar 

  4. Chen C, Sewvandi G A, Kusunose T, et al. Synthesis of {010}-faceted anatase TiO2 nanoparticles from layered titanate for dye-sensitized solar cells. CrystEngComm, 2014, 16(37): 8885–8895

    Article  Google Scholar 

  5. Okada T, Ide Y, Ogawa M. Organic-inorganic hybrids based on ultrathin oxide layers: designed nanostructures for molecular recognition. Chemistry, an Asian Journal, 2012, 7(9): 1980–1992

    Article  Google Scholar 

  6. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278

    Article  Google Scholar 

  7. Ide Y, Sadakane M, Sano T, et al. Functionalization of layered titanates. Journal of Nanoscience and Nanotechnology, 2014, 14(3): 2135–2147

    Article  Google Scholar 

  8. Kim I Y, Jo Y K, Lee J M, et al. Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites. Journal of Physical Chemistry Letters, 2014, 5(23): 4149–4161

    Article  Google Scholar 

  9. Sasaki T, Watanabe M, Komatsu Y, et al. Layered hydrous titanium dioxide: potassium ion exchange and structural characterization. Inorganic Chemistry, 1985, 24(14): 2265–2271

    Article  Google Scholar 

  10. Dion M, Piffard Y, Tournoux M. The tetratitanates M2Ti4O9 (M = Li, Na, K, Rb, Cs, Tl, Ag). Journal of Inorganic and Nuclear Chemistry, 1978, 40(5): 917–918

    Article  Google Scholar 

  11. Izawa H, Kikkawa S, Koizumi M. Formation and properties of n-alkylammonium complexes with layered tri- and tetra-titanates. Polyhedron, 1983, 2(8): 741–744

    Article  Google Scholar 

  12. Miyamoto N, Kuroda K, Ogawa M. Exfoliation and film preparation of a layered titanate, Na2Ti3O7, and intercalation of pseudoisocyanine dye. Journal of Materials Chemistry, 2004, 14 (2): 165–170

    Article  Google Scholar 

  13. Allen M R, Thibert A, Sabio E M, et al. Evolution of physical and photocatalytic properties in the layered titanates A2Ti4O9 (A = K, H) and in nanosheets derived by chemical exfoliation. Chemistry of Materials, 2010, 22(3): 1220–1228

    Article  Google Scholar 

  14. Anderson M W, Klinowski J. Layered titanate pillared with alumina. Inorganic Chemistry, 1990, 29(17): 3260–3263

    Article  Google Scholar 

  15. Ma R, Sasaki T. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Accounts of Chemical Research, 2015, 48(1): 136–143

    Article  Google Scholar 

  16. Xiong Z, Zhao X S. Preparation of layered titanate with interlayer cadmium sulfide particles for visible-light-assisted dye degradation. RSC Advances, 2014, 4(106): 61960–61967

    Article  Google Scholar 

  17. Sehati S, Entezari M H. Sono-intercalation of CdS nanoparticles into the layers of titanate facilitates the sunlight degradation of Congo red. Journal of Colloid and Interface Science, 2016, 462: 130–139

    Article  Google Scholar 

  18. Andersson S, Wadsley A D. The crystal structure of Na2Ti3O7. Acta Crystallographica, 1961, 14(12): 1245–1249

    Article  Google Scholar 

  19. Andersson S, Wadsley A D, Nilsson R, et al. The crystal structure of K2Ti2O5. Acta Chemica Scandinavica, 1961, 15: 663–669

    Article  Google Scholar 

  20. Grey I E, Madsen I C, Watts J A, et al. New cesium titanate layer structures. Journal of Solid State Chemistry, 1985, 58(3): 350–356

    Article  Google Scholar 

  21. Andersson S, Wadsley A D. The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates. Acta Crystallographica, 1962, 15(3): 194–201

    Article  Google Scholar 

  22. Berry K L, Aftandilian V D, Gilbert W W, et al. Potassium tetra- and hexatitanates. Journal of Inorganic and Nuclear Chemistry, 1960, 14(3–4): 231–239

    Article  Google Scholar 

  23. Izawa H, Kikkawa S, Koizumi M. Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9. Journal of Physical Chemistry, 1982, 86(25): 5023–5026

    Article  Google Scholar 

  24. Kwiatkowska J, Grey I E, Madsen I C, et al. An X-ray and neutron diffraction study of cesium titanates, Cs2Ti5O11 and Cs2Ti5O11. X2O, X = H, D. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1987, 43(3): 258–265

    Article  Google Scholar 

  25. Bursill L A, Smith D J, Kwiatkowska J. Identifying characteristics of the fibrous cesium titanate Cs2Ti5O11. Journal of Solid State Chemistry, 1987, 69(2): 360–368

    Article  Google Scholar 

  26. Fujiki Y. Growth of mixed fibers of potassium-tetratitanate and- dititanate by slow-cooling calcination method. Journal of the Ceramic Association, Japan, 1982, 90(1046): 624–626

    Article  Google Scholar 

  27. Kajiwara M. The formation of potassium titanate fibre with flux methods. Journal of Materials Science, 1987, 22(4): 1223–1227

    Article  Google Scholar 

  28. Lee J K, Lee K H, Kim H. Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method. Journal of Materials Science, 1996, 31(20): 5493–5498

    Article  Google Scholar 

  29. Izawa H, Kikkawa S, Koizumi M. Hydrothermal synthesis of sodium trititanate and preparation of fibrous H2Ti3O7. Journal of the Japan Society of Powder and Powder Metallurgy, 1986, 33(7): 353–355

    Article  Google Scholar 

  30. Masaki N, Uchida S, Yamane H, et al. Hydrothermal synthesis of potassium titanates in Ti-KOHH2O system. Journal of Materials Science, 2000, 35(13): 3307–3311

    Article  Google Scholar 

  31. Kitano M, Wada E, Nakajima K, et al. Protonated titanate nanotubes with lewis and brønsted acidity: relationship between nanotube structure and catalytic activity. Chemistry of Materials, 2013, 25(3): 385–393

    Article  Google Scholar 

  32. Ma R, Fukuda K, Sasaki T, et al. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. Journal of Physical Chemistry B, 2005, 109(13): 6210–6214

    Article  Google Scholar 

  33. Lan Y, Gao X, Zhu H, et al. Titanate nanotubes and nanorods prepared from rutile powder. Advanced Functional Materials, 2005, 15(8): 1310–1318

    Article  Google Scholar 

  34. Thennarasu S, Rajasekar K, Balkis Ameen K. Hydrothermal temperature as a morphological control factor: preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons. Journal of Molecular Structure, 2013, 1049: 446–457

    Article  Google Scholar 

  35. Sakurai Y, Yoshida T. Synthesis of K2Ti4O9 by the hydrolysis of KOH-Ti(iso-C3H7O)4 ethanol solution. Journal of the Ceramic Society of Japan, 1991, 99(1146): 105–107

    Article  Google Scholar 

  36. Yang J, Li D, Wang X, et al. Study on the synthesis and ion-exchange properties of layered titanate Na2Ti3O7 powders with different sizes. Journal of Materials Science, 2003, 38(13): 2907–2911

    Article  Google Scholar 

  37. Bao N, Feng X, Shen L, et al. Calcination syntheses of a series of potassium titanates and their morphologic evolution. Crystal Growth & Design, 2002, 2(5): 437–442

    Article  Google Scholar 

  38. Bao N, Shen L, Feng X, et al. High quality and yield in potassium titanate whiskers synthesized by calcination from hydrous titania. Journal of the American Ceramic Society, 2004, 87(3): 326–330

    Article  Google Scholar 

  39. Yakubovich O V, Kireev V V. Refinement of the crystal structure of Na2Ti3O7. Crystallography Reports, 2003, 48(1): 24–28

    Article  Google Scholar 

  40. Fujiki Y, Ohta N. The flux growth reactions of potassium tetratitanate (K2Ti4O9) fibers. Journal of the Ceramic Association, Japan, 1980, 88(1015): 111–116

    Article  Google Scholar 

  41. Bavykin D V, Parmon V N, Lapkin A A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 2004, 14(22): 3370–3377

    Article  Google Scholar 

  42. Gao T, Fjellvåg H, Norby P. Crystal structures of titanate nanotubes: a Raman scattering study. Inorganic Chemistry, 2009, 48(4): 1423–1432

    Article  Google Scholar 

  43. Yang D, Zheng Z, Yuan Y, et al. Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(ii) ions from water. Physical Chemistry Chemical Physics, 2010, 12(6): 1271–1277

    Article  Google Scholar 

  44. Feng M, You W, Wu Z, et al. Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate. ACS Applied Materials & Interfaces, 2013, 5(23): 12654–12662

    Article  Google Scholar 

  45. Magalhães Nunes L, Gouveia de Souza A, Fernandes de Farias R. Synthesis of new compounds involving layered titanates and niobates with copper(II). Journal of Alloys and Compounds, 2001, 319(1–2): 94–99

    Article  Google Scholar 

  46. Yang D, Zheng Z, Liu H, et al. Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. Journal of Physical Chemistry C, 2008, 112 (42): 16275–16280

    Article  Google Scholar 

  47. Li G, Zhang L, Fang M. Facile fabrication of sodium titanate nanostructures using metatitanic acid (TiO2 · H2O) and its adsorption property. Journal of Nanomaterials, 2012: 875295

  48. Li N, Zhang L, Chen Y, et al. Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures. Advanced Functional Materials, 2012, 22(4): 835–841

    Article  Google Scholar 

  49. Wang T, Liu W, Xiong L, et al. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chemical Engineering Journal, 2013, 215–216: 366–374

    Article  Google Scholar 

  50. Liu W, Sun W, Han Y, et al. Adsorption of Cu(II) and Cd(II) on titanate nanomaterials synthesized via hydrothermal method under different NaOH concentrations: role of sodium content. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2014, 452: 138–147

    Article  Google Scholar 

  51. Vithal M, Rama Krishna S, Ravi G, et al. Synthesis of Cu2+ and Ag+ doped Na2Ti3O7 by a facile ion-exchange method as visible-light-driven photocatalysts. Ceramics International, 2013, 39(7): 8429–8439

    Article  Google Scholar 

  52. Gu X, Chen F, Zhao B, et al. Photocatalytic reactivity of Ceintercalated layered titanate prepared with a hybrid method based on ion-exchange and thermal treatment. Superlattices and Microstructures, 2011, 50(2): 107–118

    Article  Google Scholar 

  53. Ikenaga K, Kurokawa H, Ohshima M A, et al. New development of inorganic ion exchanger: ion-exchange reaction of layered sodium titanate (Na2Ti3O7) with mono, di, and trivalent ions. Journal of Ion Exchange, 2005, 16(1): 10–17

    Article  Google Scholar 

  54. Liu W, Zhao X, Wang T, et al. Selective and irreversible adsorption of mercury(ii) from aqueous solution by a flower-like titanate nanomaterial. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(34): 17676–17684

    Article  Google Scholar 

  55. Izawa H, Kikkawa S, Koizumi M. Cation exchange selectivity of layered titanates, H2Ti3O7. Journal of Solid State Chemistry, 1985, 60(2): 264–267

    Article  Google Scholar 

  56. Sasaki T, Komatsu Y, Fujiki Y. Protonated pentatitanate: preparation, characterizations and cation intercalation. Chemistry of Materials, 1992, 4(4): 894–899

    Article  Google Scholar 

  57. Komatsu Y, Fujiki Y, Sasaki T. Ion-exchange equilibrium of alkali metal ions between crystalline hydrous titanium dioxide fibers and aqueous solutions. Bunseki Kagaku, 1982, 31(7): E225–E229

    Article  Google Scholar 

  58. Komatsu Y, Fujiki Y, Sasaki T. Adsorption of alkaline earth metal ions on crystalline hydrous titanium dioxide fibers at 298 to 353K. Bunseki Kagaku, 1984, 33(5): E159–E162

    Article  Google Scholar 

  59. Komatsu Y, Fujiki Y, Sasaki T. Distribution coefficients of alkaline earth metal ions and their possible applications on crystalline hydrous titanium dioxide fibers. Bunseki Kagaku, 1983, 32(2): E33–E39

    Article  Google Scholar 

  60. Szirmai P, Stevens J, Horváth E, et al. Competitive ion-exchange of manganese and gadolinium in titanate nanotubes. Catalysis Today, 2017, 284: 146–152

    Article  Google Scholar 

  61. Song X, Yang E, Zheng Y. Synthesis of MxHyTi3O7 nanotubes by simple ion-exchanged process and their adsorption property. Chinese Science Bulletin, 2007, 52(18): 2491–2495

    Article  Google Scholar 

  62. Torrente-Murciano L, Lapkin A A, Bavykin D V, et al. Highly selective Pd/titanate nanotube catalysts for the double-bond migration reaction. Journal of Catalysis, 2007, 245(2): 272–278

    Article  Google Scholar 

  63. Chang T H. Synthesis and characterization of europium-exchanged titanate nanoporous phosphors. Journal of the Chinese Chemical Society (Taipei), 2016, 63(2): 233–238

    Article  Google Scholar 

  64. Huang J, Cao Y, Liu Z, et al. Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chemical Engineering Journal, 2012, 180: 75–80

    Article  Google Scholar 

  65. Izawa H, Kikkawa S, Koizumi M. Europium3+ and terbium3+ intercalations into layered titanic acids H2Ti3O7 and H2Ti4O9.H2O using ion-exchange reaction. Nippon Kagaku Kaishi, 1987, 3(3): 397–399

    Article  Google Scholar 

  66. Izawa H, Kikkawa S, Koizumi M. Effect of intercalated alkylammonium on cation exchange properties of H2Ti3O7. Journal of Solid State Chemistry, 1987, 69(2): 336–342

    Article  Google Scholar 

  67. Komatsu Y, Fujiki Y, Sasaki T. Adsorption of cobalt(II) ions on crystalline hydrous titanium dioxide fibers at 298 to 423 K. Bulletin of the Chemical Society of Japan, 1986, 59(1): 49–52

    Article  Google Scholar 

  68. Sasaki T, Komatsu Y, Fujiki Y. Distribution coefficients of lanthanide elements and some separations on layered hydrous titanium dioxide. Journal of Radioanalytical and Nuclear Chemistry, 1986, 107(2): 111–119

    Article  Google Scholar 

  69. Sasaki T, Komatsu Y, Fujiki Y. Formation and characterization of layered lithium titanate hydrate. Materials Research Bulletin, 1987, 22(10): 1321–1328

    Article  Google Scholar 

  70. Shannon R D, Prewitt C T. Effective ionic radii in oxides and fluorides. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925–946

    Article  Google Scholar 

  71. Saothayanun T K, Sirinakorn T T, Ogawa M. Ion exchange of layered alkali titanates (Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) with alkali halides by the solid-state reactions at room temperature. Inorganic Chemistry, 2020, 59(6): 4024–4029

    Article  Google Scholar 

  72. Kim Y I, Salim S, Huq M J, et al. Visible-light photolysis of hydrogen iodide using sensitized layered semiconductor particles. Journal of the American Chemical Society, 1991, 113(25): 9561–9563

    Article  Google Scholar 

  73. Miyata H, Sugahara Y, Kuroda K, et al. Synthesis of a viologen-tetratitanate intercalation compound and its photochemical behaviour. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1988, 84(8): 2677–2682

    Article  Google Scholar 

  74. Kaito R, Miyamoto N, Kuroda K, et al. Intercalation of cationic phthalocyanines into layered titanates and control of the microstructures. Journal of Materials Chemistry, 2002, 12(12): 3463–3468

    Article  Google Scholar 

  75. Miyamoto N, Kuroda K, Ogawa M. Visible light induced electron transfer and long-lived charge separated state in cyanine dye/layered titanate intercalation compounds. Journal of Physical Chemistry B, 2004, 108(14): 4268–4274

    Article  Google Scholar 

  76. Ide Y, Ogawa M. Surface modification of a layered alkali titanate with organosilanes. Chemical Communications, 2003, 11(11): 1262

    Article  Google Scholar 

  77. (Baitong) Tirayaphanitchkul C, (Jaa) Imwiset K, Ogawa M. Nanoarchitectonics through organic modification of oxide based layered materials: concepts, methods and functions. Bulletin of the Chemical Society of Japan, 2021, 94(2): 678–693

    Article  Google Scholar 

  78. Ogawa M, Takizawa Y. Intercalation of tris(2, 2′-bipyridine) ruthenium(II) into a layered silicate, magadiite, with the aid of a crown ether. Journal of Physical Chemistry B, 1999, 103(24): 5005–5009

    Article  Google Scholar 

  79. Ogawa M, Takizawa Y. One pot synthesis of layered tetratitanateorganic intercalation compounds with the aid of macrocyclic compounds. Molecular Crystals and Liquid Crystals Science and Technology Section A, Molecular Crystals and Liquid Crystals, 2000, 341(2): 357–362

    Article  Google Scholar 

  80. Hsu C Y, Chiu T C, Shih M H, et al. Effect of electron density of Pt catalysts supported on alkali titanate nanotubes in cinnamaldehyde hydrogenation. Journal of Physical Chemistry C, 2010, 114(10): 4502–4510

    Article  Google Scholar 

  81. Marques T M F, Ferreira O P, da Costa J A P, et al. Study of the growth of CeO2 nanoparticles onto titanate nanotubes. Journal of Physics and Chemistry of Solids, 2015, 87: 213–220

    Article  Google Scholar 

  82. Machida M, Ma X, Taniguchi H, et al. Pillaring and photocatalytic property of partially substituted layered titanates, Na2Ti3xMxO7 and K2Ti4xMxO9 (M = Mn, Fe, Co, Ni, Cu). Journal of Molecular Catalysis A Chemical, 2000, 155(1–2): 131–142

    Article  Google Scholar 

  83. Jiang F, Zheng Z, Xu Z, et al. Preparation and characterization of SiO2-pillared H2Ti4O9 and its photocatalytic activity for methylene blue degradation. Journal of Hazardous Materials, 2009, 164(2–3): 1250–1256

    Article  Google Scholar 

  84. Uchida S, Yamamoto Y, Fujishiro Y, et al. Intercalation of titanium oxide in layered H2Ti4O9 and H4Nb6O17 and photocatalytic water cleavage with H2Ti4O9/(TiO2, Pt) and H4Nb6O17/(TiO2, Pt) nanocomposites. Journal of the Chemical Society, Faraday Transactions, 1997, 93(17): 3229–3234

    Article  Google Scholar 

  85. Ogura S, Kohno M, Sato K, et al. Effects of RuO2 on activity for water decomposition of a RuO2/Na2Ti3O7 photocatalyst with a zigzag layer structure. Journal of Materials Chemistry, 1998, 8(11): 2335–2337

    Article  Google Scholar 

  86. Harsha N, Krishna K V S, Renuka N K, et al. Facile synthesis of γ-Fe2O3 nanoparticles integrated H2Ti3O7 nanotubes structure as a magnetically recyclable dye-removal catalyst. RSC Advances, 2015, 5(38): 30354–30362

    Article  Google Scholar 

  87. Lin B, Zhou Y, He L, et al. Mesoporous CdS-pillared H2Ti3O7 nanohybrids with efficient photocatalytic activity. Journal of Physics and Chemistry of Solids, 2015, 79: 66–71

    Article  Google Scholar 

  88. Feist T P, Davies P K. The soft chemical synthesis of TiO2 (B) from layered titanates. Journal of Solid State Chemistry, 1992, 101(2): 275–295

    Article  Google Scholar 

  89. Zhu H Y, Lan Y, Gao X P, et al. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. Journal of the American Chemical Society, 2005, 127(18): 6730–6736

    Article  Google Scholar 

  90. Zou C, Zhao X, Xu Y. One-dimensional zirconium-doped titanate nanostructures for rapid and capacitive removal of multiple heavy metal ions from water. Dalton Transactions (Cambridge, England), 2018, 47(14): 4909–4915

    Article  Google Scholar 

  91. Sirinakorn T T, Bureekaew S, Ogawa M. Layered titanates (Na2Ti3O7 and Cs2Ti5O11) as very high capacity adsorbents of cadmium(II). Bulletin of the Chemical Society of Japan, 2019, 92(1): 1–6

    Article  Google Scholar 

  92. Tip Sirinakorn T, Bureekaew S, Ogawa M. Highly efficient indium (III) collection from water by a reaction with a layered titanate (Na2Ti3O7). European Journal of Inorganic Chemistry, 2018, 2018(34): 3835–3839

    Article  Google Scholar 

  93. Shibata M, Kudo A, Tanaka A, et al. Photocatalytic activities of layered titanium compounds and their derivatives for H2 evolution from aqueous methanol solution. Chemistry Letters, 1987, 16(6): 1017–1018

    Article  Google Scholar 

  94. Kudo A, Kondo T. Photoluminescent and photocatalytic properties of layered caesium titanates, Cs2TinO2n+1 (n = 2, 5, 6). Journal of Materials Chemistry, 1997, 7: 777–780

    Article  Google Scholar 

  95. Esmat M, Farghali A A, El-Dek S I, et al. Conversion of a 2D lepidocrocite-type layered titanate into its 1D nanowire form with enhancement of cation exchange and photocatalytic performance. Inorganic Chemistry, 2019, 58(12): 7989–7996

    Article  Google Scholar 

  96. Hosogi Y, Kato H, Kudo A. Photocatalytic activities of layered titanates and niobates ion-exchanged with Sn2+ under visible light irradiation. Journal of Physical Chemistry C, 2008, 112(45): 17678–17682

    Article  Google Scholar 

  97. Lin C H, Chao J H, Tsai W J, et al. Effects of electron charge density and particle size of alkali metal titanate nanotube-supported Pt photocatalysts on production of H2 from neat alcohol. Physical Chemistry Chemical Physics, 2014, 16(43): 23743–23753

    Article  Google Scholar 

  98. Hong S W, Kim A, Choi J H, et al. Intercalation of conjugated polyelectrolytes in layered titanate nanosheets for enhancement in photocatalytic activity. Journal of Solid State Chemistry, 2019, 269: 291–296

    Article  Google Scholar 

  99. Ogawa M, Morita M, Igarashi S, et al. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance. Journal of Solid State Chemistry, 2013, 206: 9–13

    Article  Google Scholar 

  100. Escobedo Bretado M A, González Lozano M A, Collins Martínez V, et al. Synthesis, characterization and photocatalytic evaluation of potassium hexatitanate (K2Ti6O13) fibers. International Journal of Hydrogen Energy, 2019, 44(24): 12470–12476

    Article  Google Scholar 

  101. Yoshida H, Takeuchi M, Sato M, et al. Potassium hexatitanate photocatalysts prepared by a flux method for water splitting. Catalysis Today, 2014, 232: 158–164

    Article  Google Scholar 

  102. Soontornchaiyakul W, Fujimura T, Yano N, et al. Photocatalytic hydrogen evolution over exfoliated Rh-doped titanate nanosheets. ACS Omega, 2020, 5(17): 9929–9936

    Article  Google Scholar 

  103. Khan S, Ikari H, Suzuki N, et al. One-pot synthesis of anatase, rutile-decorated hydrogen titanate nanorods by yttrium doping for solar H2 production. ACS Omega, 2020, 5(36): 23081–23089

    Article  Google Scholar 

  104. Liu G, Wang L, Sun C, et al. Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates. Chemistry of Materials, 2009, 21(7): 1266–1274

    Article  Google Scholar 

  105. Esmat M, El-Hosainy H, Tahawy R, et al. Nitrogen dopingmediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly. Applied Catalysis B: Environmental, 2021, 285: 119755

    Article  Google Scholar 

  106. Li P, Cao Q, Zheng D, et al. Synthesis of mesoporous TiO2-B nanobelts with highly crystalized walls toward efficient H2 evolution. Nanomaterials (Basel, Switzerland), 2019, 9(7): 919

    Article  Google Scholar 

  107. Chen W, Dosado A G, Chan A, et al. Highly reactive anatase nanorod photocatalysts synthesized by calcination of hydrogen titanate nanotubes: effect of calcination conditions on photocatalytic performance for aqueous dye degradation and H2 production in alcohol-water mixtures. Applied Catalysis A, General, 2018, 565: 98–118

    Article  Google Scholar 

  108. Wang C, Zhang X, Zhang Y, et al. Hydrothermal growth of layered titanate nanosheet arrays on titanium foil and their topotactic transformation to heterostructured TiO2 photocatalysts. Journal of Physical Chemistry C, 2011, 115(45): 22276–22285

    Article  Google Scholar 

  109. Wang C, Zhang X, Wei Y, et al. Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO2(B) nanotube heterojunction. Dalton Transactions (Cambridge, England), 2015, 44(29): 13331–13339

    Article  Google Scholar 

  110. Li Y, Wang C, Song M, et al. TiO2x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Applied Catalysis B: Environmental, 2019, 243: 760–770

    Article  Google Scholar 

  111. Liu H, Lin B, He L, et al. Mesoporous cobalt-intercalated layered tetratitanate for efficient visible-light photocatalysis. Chemical Engineering Journal, 2013, 215–216: 396–403

    Article  Google Scholar 

  112. Cui W, Ma S, Liu L, et al. Photocatalytic activity of Cd1xZnxS/K2Ti4O9 for Rhodamine B degradation under visible light irradiation. Applied Surface Science, 2013, 271: 171–181

    Article  Google Scholar 

  113. Camposeco R, Castillo S, Rodriguez-González V, et al. Promotional effect of Rh nanoparticles on WO3/TiO2 titanate nanotube photocatalysts for boosted hydrogen production. Journal of Photochemistry and Photobiology A, Chemistry, 2018, 353: 114–121

    Article  Google Scholar 

  114. Yousef A, Barakat N A M, Khalil K A, et al. Photocatalytic release of hydrogen from ammonia borane-complex using Ni(0)-doped TiO2/C electrospun nanofibers. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2012, 410: 59–65

    Article  Google Scholar 

  115. Nirmala R, Kim H Y, Yi C, Barakat N A M, et al. Electrospun nickel doped titanium dioxide nanofibers as an effective photocatalyst for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2012, 37(13): 10036–10045

    Article  Google Scholar 

  116. Simagina V I, Komova O V, Ozerova A M, et al. TiO2-based photocatalysts for controllable hydrogen evolution from ammonia borane. Catalysis Today, 2020, online, doi:https://doi.org/10.1016/j.cattod.2020.04.070

  117. Zaki A H, Shalan A E, El-Shafeay A, et al. Acceleration of ammonium phosphate hydrolysis using TiO2 microspheres as a catalyst for hydrogen production. Nanoscale Advances, 2020, 2(5): 2080–2086

    Article  Google Scholar 

  118. Barakat N A M, Zaki A H, Ahmed E, et al. FexCo1x-doped titanium oxide nanotubes as effective photocatalysts for hydrogen extraction from ammonium phosphate. International Journal of Hydrogen Energy, 2018, 43(16): 7990–7997

    Article  Google Scholar 

  119. Wu Y, Sun Y, Fu W, et al. Graphene-based modulation on the growth of urchin-like Na2Ti3O7 microspheres for photothermally enhanced H2 generation from ammonia borane. ACS Applied Nano Materials, 2020, 3(3): 2713–2722

    Article  Google Scholar 

  120. Park H, Ou H H, Colussi A J, et al. Artificial photosynthesis of C1–C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots. Journal of Physical Chemistry A, 2015, 119(19): 4658–4666

    Article  Google Scholar 

  121. Wei Z, Kowalska E, Wang K, et al. Enhanced photocatalytic activity of octahedral anatase particles prepared by hydrothermal reaction. Catalysis Today, 2017, 280: 29–36

    Article  Google Scholar 

  122. Li Q, Kako T, Ye J. Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. International Journal of Hydrogen Energy, 2011, 36(8): 4716–4723

    Article  Google Scholar 

  123. Ide Y, Shirae W, Takei T, et al. Merging cation exchange and photocatalytic charge separation efficiency in an anatase/K2Ti4O9 nanobelt heterostructure for metal ions fixation. Inorganic Chemistry, 2018, 57(10): 6045–6050

    Article  Google Scholar 

  124. Ding J, Ming J, Lu D, et al. Study of the enhanced visible-light-sensitive photocatalytic activity of Cr2O3 loaded titanate nanosheets for Cr(VI) degradation and H2 generation. Catalysis Science & Technology, 2017, 7(11): 2283–2297

    Article  Google Scholar 

  125. Xue J, Long L, Zhang L, et al. Enhanced H2 evolution and the interfacial electron transfer mechanism of titanate nanotube sensitized with CdS quantum dots and graphene quantum dots. International Journal of Hydrogen Energy, 2020, 45(11): 6476–6486

    Article  Google Scholar 

  126. Dosado A G, Chen W, Chan A, et al. Novel Au/TiO2 photocatalysts for hydrogen production in alcohol-water mixtures based on hydrogen titanate nanotube precursors. Journal of Catalysis, 2015, 330: 238–254

    Article  Google Scholar 

  127. Wang H, Hu X, Ma Y, et al. Nitrate-group-grafting-induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2020, 41(1): 95–102

    Article  Google Scholar 

  128. Dostanić J, Lončarević D, Pavlović V B, et al. Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel. Ceramics International, 2019, 45(15): 19447–19455

    Article  Google Scholar 

  129. Huang J, Jiang Y, Li G, et al. Hetero-structural NiTiO3/TiO2 nanotubes for efficient photocatalytic hydrogen generation. Renewable Energy, 2017, 111: 410–415

    Article  Google Scholar 

  130. Majeed I, Nadeem M A, Kanodarwala F K, et al. Controlled synthesis of TiO2 nanostructures: exceptional hydrogen production in alcohol-water mixtures over Cu(OH)2-Ni(OH)2/TiO2 nanorods. ChemistrySelect, 2017, 2(25): 7497–7507

    Article  Google Scholar 

  131. Crake A, Christoforidis K C, Gregg A, et al. The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer. Small, 2019, 15(11): 1805473

    Article  Google Scholar 

  132. Li J, Tang Z, Zhang Z. H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability. Electrochemistry Communications, 2005, 7(1): 62–67

    Article  Google Scholar 

  133. Chiba K, Kijima N, Takahashi Y, et al. Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure. Solid State Ionics, 2008, 178(33–34): 1725–1730

    Article  Google Scholar 

  134. Senguttuvan P, Rousse G, Seznec V, et al. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chemistry of Materials, 2011, 23(18): 4109–4111

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Chair Grant 2017 (Grant No. FDA-CO-2560-5655) from the National Science and Technology Development Agency (NSTDA), Thailand, the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, NXPO (B05F630117), Thailand, and the MEXT Promotion of Distinctive Joint Research Center Program (Grant No. JPMXP0618217662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ogawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saothayanun, T.K., Sirinakorn, T.T. & Ogawa, M. Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues. Front. Energy 15, 631–655 (2021). https://doi.org/10.1007/s11708-021-0776-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-021-0776-6

Keywords

Navigation