Skip to main content
Log in

Biomimetic construction of oriented lamellar Col/nHAP composite scaffolds and mediation of macrophages to promote angiogenesis and bone regeneration

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Pore characteristics have been identified as key design parameters for osteoimmunomodulation. The strategy reported here is to create an appropriate immune microenvironment by regulating pore characteristics of scaffolds, thereby promoting early angiogenesis and enhancing osteogenesis. A series of collagen/nanohydroxyapatite (Col/nHAP) composite scaffolds with ordered lamellar structures and different layer spacings were prepared by mimicking the ordered lamellar topology of the bone matrix. Our research indicated that the layer spacing and ordered topology of the scaffold exerted an important influence on phenotype transformation of macrophages and the secretion of angiogenic factors. The Col/nHAP-O(135) with large layer spacing not only supported cell attachment and diffusion in vitro, but also promoted early angiogenesis by timely switching from M1 to M2 macrophage phenotype. In vivo data showed that the layer spacing and the ordered structure of the scaffold synergistically regulated the inflammatory response and triggered macrophages to secrete more angiogenesis related cytokines. Col/nHAP-O(135) considerably promoted the neovascularization and new bone formation in the defect site, indicating that Col/nHAP-O(135) could significantly enhance the osteogenic activity of stem cells with the involvement of macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Z, Klein T, Murray R Z, et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today, 2016, 19(6): 304–321

    Article  CAS  Google Scholar 

  2. Zordan P, Rigamonti E, Freudenberg K, et al. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration. Cell Death & Disease, 2014, 5(1): e1031

    Article  CAS  Google Scholar 

  3. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 2012, 30(10): 546–554

    Article  CAS  Google Scholar 

  4. Mountziaris P M, Mikos A G. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Engineering Part B: Reviews, 2008, 14(2): 179–186

    Article  CAS  Google Scholar 

  5. Guihard P, Danger Y, Brounais B, et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells, 2012, 30(4): 762–772

    Article  CAS  Google Scholar 

  6. Dong L, Wang C. Harnessing the power of macrophages/monocytes for enhanced bone tissue engineering. Trends in Biotechnology, 2013, 31(6): 342–346

    Article  CAS  Google Scholar 

  7. Stefater J A, Ren S, Lang R A, et al. Metchnikoff’s policemen: macrophages in development, homeostasis and regeneration. Trends in Molecular Medicine, 2011, 17(12): 743–752

    Article  CAS  Google Scholar 

  8. Loi F, Córdova L A, Pajarinen J, et al. Inflammation, fracture and bone repair. Bone, 2016, 86: 119–130

    Article  CAS  Google Scholar 

  9. Vi L, Baht G S, Whetstone H, et al. Macrophages promote osteoblastic differentiation in vivo: implications in fracture repair and bone homeostasis. Journal of Bone and Mineral Research, 2015, 30(6): 1090–1102

    Article  CAS  Google Scholar 

  10. Jing W, Smith A A, Liu B, et al. Reengineering autologous bone grafts with the stem cell activator WNT3A. Biomaterials, 2015, 47: 29–40

    Article  CAS  Google Scholar 

  11. Kanczler J M, Oreffo R O C. Osteogenesis and angiogenesis: the potential for engineering bone. European Cells & Materials, 2008, 15: 100–114

    Article  CAS  Google Scholar 

  12. Wang M, Zhang G, Wang Y, et al. Crosstalk of mesenchymal stem cells and macrophages promotes cardiac muscle repair. International Journal of Biochemistry & Cell Biology, 2015, 58: 53–61

    Article  CAS  Google Scholar 

  13. Spiller K L, Anfang R R, Spiller K J, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials, 2014, 35(15): 4477–4488

    Article  CAS  Google Scholar 

  14. Freytes D O, Kang J W, Marcos-Campos I, et al. Macrophages modulate the viability and growth of human mesenchymal stem cells. Journal of Cellular Biochemistry, 2013, 114(1): 220–229

    Article  CAS  Google Scholar 

  15. Stout R D, Jiang C, Matta B, et al. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology, 2005, 175(1): 342–349

    Article  CAS  Google Scholar 

  16. Guihard P, Boutet M A, Brounais-Le Royer B, et al. Oncostatin M, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. The American Journal of Pathology, 2015, 185(3): 765–775

    Article  CAS  Google Scholar 

  17. Spiller K L, Nassiri S, Witherel C E, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials, 2015, 37: 194–207

    Article  CAS  Google Scholar 

  18. Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nature Materials, 2009, 8(1): 15–23

    Article  CAS  ADS  Google Scholar 

  19. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474–5491

    Article  CAS  Google Scholar 

  20. Hoang A P, Ruprai H, Fidanovski K, et al. Porous and sutureless bioelectronic patch with retained electronic properties under cyclic stretching. Applied Materials Today, 2019, 15: 315–322

    Article  Google Scholar 

  21. Liu Y, Cao L, Zhang S, et al. Effect of hierarchical porous scaffold on osteoimmunomodulation and bone formation. Applied Materials Today, 2020, 20: 100779

    Article  Google Scholar 

  22. Madden L R, Mortisen D J, Sussman E M, et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34): 15211–15216

    Article  CAS  ADS  Google Scholar 

  23. Sussman E M, Halpin M C, Muster J, et al. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Annals of Biomedical Engineering, 2014, 42(7): 1508–1516

    Article  Google Scholar 

  24. Garg K, Pullen N A, Oskeritzian C A, et al. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials, 2013, 34(18): 4439–4451

    Article  CAS  Google Scholar 

  25. Wei G, Ma P X. Structure and properties of nanohydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 2004, 25(19): 4749–4757

    Article  CAS  Google Scholar 

  26. Sudheesh Kumar P T, Srinivasan S, Lakshmanan V K, et al. β-Chitin hydrogel/nano hydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 2011, 85(3): 584–591

    Article  CAS  Google Scholar 

  27. Ren J, Zhao P, Ren T, et al. Poly (D,L-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. Journal of Materials Science: Materials in Medicine, 2008, 19(3): 1075–1082

    CAS  Google Scholar 

  28. He X T, Li X, Yin Y, et al. The effects of conditioned media generated by polarized macrophages on the cellular behaviours of bone marrow mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2018, 22(2): 1302–1315

    Article  CAS  Google Scholar 

  29. Perumal G, Pappuru S, Chakraborty D, et al. Synthesis and characterization of curcumin loaded PLA-hyperbranched polyglycerol electrospun blend for wound dressing applications. Materials Science and Engineering C, 2017, 76: 1196–1204

    Article  CAS  Google Scholar 

  30. Wang S, Umrath F, Cen W, et al. Angiogenic potential of VEGF mimetic peptides for the biofunctionalization of collagen/hydroxyapatite composites. Biomolecules, 2021, 11(10): 1538

    Article  CAS  Google Scholar 

  31. Yu X, Qian G, Chen S, et al. A tracheal scaffold of gelatin-chondroitin sulfate-hyaluronan-polyvinyl alcohol with orientated porous structure. Carbohydrate Polymers, 2017, 159: 20–28

    Article  CAS  Google Scholar 

  32. Arya N, Sardana V, Saxena M, et al. Recapitulating tumour microenvironment in chitosan-gelatin three-dimensional scaffolds: an improved in vitro tumour model. Journal of the Royal Society Interface, 2012, 9(77): 3288–3302

    Article  CAS  Google Scholar 

  33. Sainson R C A, Johnston D A, Chu H C, et al. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood, 2008, 111(10): 4997–5007

    Article  CAS  Google Scholar 

  34. Yoshizumi M, Kourembanas S, Temizer D H, et al. Tumor necrosis factor increases transcription of the heparin-binding epidermal growth factor-like growth factor gene in vascular endothelial cells. Journal of Biological Chemistry, 1992, 267(14): 9467–9469

    Article  CAS  Google Scholar 

  35. Utsunomiya H, Gao X, Deng Z, et al. Biologically regulated marrow stimulation by blocking TGF-β1 with losartan oral administration results in hyaline-like cartilage repair: a rabbit osteochondral defect model. The American Journal of Sports Medicine, 2020, 48(4): 974–984

    Article  Google Scholar 

  36. Xu J, Liu J, Gan Y, et al. High-dose TGF-β1 impairs mesenchymal stem cell-mediated bone regeneration via Bmp2 inhibition. Journal of Bone and Mineral Research, 2020, 35(1): 167–180

    Article  CAS  Google Scholar 

  37. Ferraro B, Leoni G, Hinkel R, et al. Pro-angiogenic macrophage phenotype to promote myocardial repair. Journal of the American College of Cardiology, 2019, 73(23): 2990–3002

    Article  CAS  Google Scholar 

  38. Ma Q L, Fang L, Jiang N, et al. Bone mesenchymal stem cell secretion of sRANKL/OPG/M-CSF in response to macrophage-mediated inflammatory response influences osteogenesis on nanostructured Ti surfaces. Biomaterials, 2018, 154: 234–247

    Article  CAS  Google Scholar 

  39. Spiller K L, Vunjak-Novakovic G. Clinical translation of controlled protein delivery systems for tissue engineering. Drug Delivery and Translational Research, 2015, 5(2): 101–115

    Article  CAS  Google Scholar 

  40. Eggold J T, Rankin E B. Erythropoiesis, EPO, macrophages, and bone. Bone, 2019, 119: 36–41

    Article  CAS  Google Scholar 

  41. Andreata F, Syvannarath V, Clement M, et al. Macrophage CD31 signaling in dissecting aortic aneurysm. Journal of the American College of Cardiology, 2018, 72(1): 45–57

    Article  CAS  Google Scholar 

  42. Chiu Y C, Cheng M H, Engel H, et al. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials, 2011, 32(26): 6045–6051

    Article  CAS  Google Scholar 

  43. Wang L S, Du C, Chung J E, et al. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Acta Biomaterialia, 2012, 8(5): 1826–1837

    Article  CAS  Google Scholar 

  44. Marin V, Montero-Julian F A, Grès S, et al. The IL-6-soluble IL-6Ralpha autocrine loop of endothelial activation as an intermediate between acute and chronic inflammation: an experimental model involving thrombin. Journal of Immunology, 2001, 167(6): 3435–3442

    Article  CAS  Google Scholar 

  45. Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Experimental Hematology, 2009, 37(12): 1445–1453

    Article  CAS  Google Scholar 

  46. Cho D I, Kim M R, Jeong H, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental & Molecular Medicine, 2014, 46(1): e70

    Article  CAS  Google Scholar 

  47. Maggini J, Mirkin G, Bognanni I, et al. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One, 2010, 5(2): e9252

    Article  ADS  Google Scholar 

  48. Nakajima H, Uchida K, Guerrero A R, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. Journal of Neurotrauma, 2012, 29(8): 1614–1625

    Article  Google Scholar 

  49. Roh J D, Sawh-Martinez R, Brennan M P, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10): 4669–4674

    Article  CAS  ADS  Google Scholar 

  50. Madden L R, Mortisen D J, Sussman E M, et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34): 15211–15216

    Article  CAS  ADS  Google Scholar 

  51. Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. Journal of Experimental Medicine, 2007, 204(5): 1057–1069

    Article  CAS  Google Scholar 

  52. Lumeng C N, DelProposto J B, Westcott D J, et al. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes, 2008, 57(12): 3239–3246

    Article  CAS  Google Scholar 

  53. Ramachandran P, Pellicoro A, Vernon M A, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(46): E3186–E3195

    CAS  ADS  Google Scholar 

  54. Spiller K L, Anfang R R, Spiller K J, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials, 2014, 35(15): 4477–4488

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31971270) and the grant of Peak Climbing Project of Foshan Hospital of Traditional Chinese Medicine CN) (No. 202000190).

Author information

Authors and Affiliations

Authors

Contributions

Authors’ contributions Tingting Huang and Tao Huang carried out the preparation, characterization, cell experiment and animal experiment. The results were validated, analyzed and visualized by Tingting Huang, Di Xiao, and Pin Luo. Tingting Huang and Tao Huang wrote the original paper graft. Tingting Huang, Tao Huang, Pin Luo, Yiping Huang, Rong Zeng, and Mei Tu corrected and approved the paper draft. Mei Tu and Shenyu Yang provided the project resources.

Corresponding author

Correspondence to Mei Tu.

Ethics declarations

Ethical statement Animal experiments were approved by the Lab Animal Ethics Committee of Jinan University and the animals were housed in compliance with guiding principles for the care and use of animals.

Declaration of competing interests The authors declare that they have no competing interests.

Supplementary Materials

11706_2023_666_MOESM1_ESM.pdf

Biomimetic construction of oriented lamellar Col/nHAP composite scaffolds and mediation of macrophages to promote angiogenesis and bone regeneration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Huang, T., Luo, P. et al. Biomimetic construction of oriented lamellar Col/nHAP composite scaffolds and mediation of macrophages to promote angiogenesis and bone regeneration. Front. Mater. Sci. 17, 230666 (2023). https://doi.org/10.1007/s11706-023-0666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0666-4

Keywords

Navigation