Skip to main content
Log in

Selective hydrodeoxygenation of guaiacol to cyclohexanol using activated hydrochar-supported Ru catalysts

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Lignin, an abundant aromatic polymer in nature, has received significant attention for its potential in the production of bio-oils and chemicals owing to increased resource availability and environmental issues. The hydrodeoxygenation of guaiacol, a lignin-derived monomer, can produce cyclohexanol, a nylon precursor, in a carbon-negative and environmentally friendly manner. This study explored the porous properties and the effects of activation methods on the Ru-based catalyst supported by environmentally friendly and cost-effective hydrochar. Highly selective cleavage of Caryl-O bonds was achieved under mild conditions (160 °C, 0.2 MPa H2, and 4 h), and alkali activation further improved the catalytic activity. Various characterization methods revealed that hydrothermal treatment and alkali activation relatively contributed to the excellent performance of the catalysts and influenced their porous structure and Ru dispersion. X-ray photoelectron spectroscopy results revealed an increased formation of metallic ruthenium, indicating the effective regulation of interaction between active sites and supports. This synergistic approach used in this study, involving the valorization of cellulose-derived hydrochar and the selective production of nylon precursors from lignin-derived guaiacol, indicated the comprehensive and sustainable utilization of biomass resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakzeski J, Bruijnincx P C, Jongerius A L, Weckhuysen B M. The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews, 2010, 110(6): 3552–3599

    Article  CAS  PubMed  Google Scholar 

  2. Liu W, Jiang H, Yu H. Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chemistry, 2015, 17(11): 4888–4907

    Article  CAS  Google Scholar 

  3. Zhou Y, Zeng Q, He H, Wu K, Liu F, Li X. Role of methoxy and Ca-based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds. Green Energy & Environment, 2024, 9(1): 114–125

    Article  CAS  Google Scholar 

  4. Kumar A, Anushree, Kumar J, Bhaskar T. Utilization of lignin: a sustainable and eco-friendly approach. Journal of the Energy Institute, 2020, 93(1): 235–271

    Article  CAS  Google Scholar 

  5. Liu W, You W, Sun W, Yang W, Korde A, Gong Y, Deng Y. Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system. Nature Energy, 2020, 5(10): 759–767

    Article  ADS  CAS  Google Scholar 

  6. Zhou H, Wang H, Perras F A, Naik P, Pruski M, Sadow A D, Slowing I I. Two-step conversion of kraft lignin to nylon precursors under mild conditions. Green Chemistry, 2020, 22(14): 4676–4682

    Article  CAS  Google Scholar 

  7. Zhou M, Wang Y, Wang Y, Xiao G. Catalytic conversion of guaiacol to alcohols for bio-oil upgrading. Journal of Energy Chemistry, 2015, 24(4): 425–431

    Article  Google Scholar 

  8. Sharma V, Getahun T, Verma M, Villa A, Gupta N. Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: a powerful tool for the generation of non-petroleum chemical products including hydrocarbons. Renewable & Sustainable Energy Reviews, 2020, 133: 110280

    Article  CAS  Google Scholar 

  9. Liu X, Jia W, Xu G, Zhang Y, Fu Y. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8594–8601

    Article  CAS  Google Scholar 

  10. Xue G, Yin L, Shao S, Li G. Recent progress on selective hydrogenation of phenol toward cyclohexanone or cyclohexanol. Nanotechnology, 2022, 33(7): 072003

    Article  ADS  CAS  Google Scholar 

  11. Zhang K, Meng Q, Wu H, Yan J, Mei X, An P, Zheng L, Zhang J, He M, Han B. Selective hydrodeoxygenation of aromatics to cyclohexanols over Ru single atoms supported on CeO2. Journal of the American Chemical Society, 2022, 144(45): 20834–20846

    Article  CAS  PubMed  Google Scholar 

  12. Vomeri A, Stucchi M, Villa A, Evangelisti C, Beck A, Prati L. New insights for the catalytic oxidation of cyclohexane to KA oil. Journal of Energy Chemistry, 2022, 70: 45–51

    Article  CAS  Google Scholar 

  13. Karimi Estahbanati M R, Feilizadeh M, Babin A, Mei B, Mul G, Iliuta M C. Selective photocatalytic oxidation of cyclohexanol to cyclohexanone: a spectroscopic and kinetic study. Chemical Engineering Journal, 2020, 382: 122732

    Article  Google Scholar 

  14. Chiu C C, Genest A, Borgna A, Rösch N. Hydrodeoxygenation of guaiacol over Ru (0001): a DFT study. ACS Catalysis, 2014, 4(11): 4178–4188

    Article  CAS  Google Scholar 

  15. Laurenti D, Afanasiev P, Geantet C. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity. Applied Catalysis B: Environmental, 2011, 101(3–4): 239–245

    Google Scholar 

  16. Singh D, Dhepe P L. Understanding the influence of alumina supported ruthenium catalysts synthesis and reaction parameters on the hydrodeoxygenation of lignin derived monomers. Molecular Catalysis, 2020, 480: 110525

    Article  CAS  Google Scholar 

  17. Han B, Bao Z, Liu T, Zhou H, Zhuang G, Zhong X, Deng S, Wang J. Enhanced catalytic performances for guaiacol aqueous phase hydrogenation over ruthenium supported on mesoporous TiO2 hollow spheres embedded with SiO2 nanoparticles. ChemistrySelect, 2017, 2(29): 9599–9606

    Article  CAS  Google Scholar 

  18. Nakagawa Y, Ishikawa M, Tamura M, Tomishige K. Selective production of cyclohexanol and methanol from guaiacol over Ru catalyst combined with MgO. Green Chemistry, 2014, 16(4): 2197–2203

    Article  CAS  Google Scholar 

  19. Xu Q, Shi Y, Yang L, Fan G, Li F. The promotional effect of surface Ru decoration on the catalytic performance of Co-based nanocatalysts for guaiacol hydrodeoxygenation. Molecular Catalysis, 2020, 497: 111224

    Article  CAS  Google Scholar 

  20. Yu S, Dong X, Zhao P, Luo Z, Sun Z, Yang X, Li Q, Wang L, Zhang Y, Zhou H. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose. Nature Communications, 2022, 13(1): 3616

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adilina I B, Widjaya R R, Hidayati L N, Supriadi E, Safaat M, Oemry F, Restiawaty E, Bindar Y, Parker S F. Understanding the surface characteristics of biochar and its catalytic activity for the hydrodeoxygenation of guaiacol. Catalysts, 2021, 11(12): 1434

    Article  CAS  Google Scholar 

  22. Chen M, Li H, Wang Y, Tang Z, Dai W, Li C, Yang Z, Wang J. Lignin depolymerization for aromatic compounds over Ni−Ce/biochar catalyst under aqueous-phase glycerol. Applied Energy, 2023, 332: 120489

    Article  CAS  Google Scholar 

  23. Li T, Li H, Huang G, Shen X, Wang S, Li C. Transforming biomass tar into a highly active Ni-based carbon-supported catalyst for selective hydrogenation-transalkylation of guaiacol. Journal of Analytical and Applied Pyrolysis, 2021, 153: 104976

    Article  CAS  Google Scholar 

  24. Zhou M, Ye J, Liu P, Xu J, Jiang J. Water-assisted selective hydrodeoxygenation of guaiacol to cyclohexanol over supported Ni and Co bimetallic catalysts. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8824–8835

    Article  CAS  Google Scholar 

  25. Gollakota A R, Reddy M, Subramanyam M D, Kishore N. A review on the upgradation techniques of pyrolysis oil. Renewable & Sustainable Energy Reviews, 2016, 58: 1543–1568

    Article  CAS  Google Scholar 

  26. Song W, Liu Y, Baráth E, Zhao C, Lercher J A. Synergistic effects of Ni and acid sites for hydrogenation and C−O bond cleavage of substituted phenols. Green Chemistry, 2015, 17(2): 1204–1218

    Article  CAS  Google Scholar 

  27. Latifi E, Marchese A D, Hulls M C W, Soldatov D V, Schlaf M. [Ru(triphos)(CH3CN)3](OTf)2 as a homogeneous catalyst for the hydrogenation of biomass derived 2,5-hexanedione and 2,5-dimethyl-furan in aqueous acidic medium. Green Chemistry, 2017, 19(19): 4666–4679

    Article  CAS  Google Scholar 

  28. Bjelić A, Grilc M, Likozar B. Catalytic hydrogenation and hydrodeoxygenation of lignin-derived model compound eugenol over Ru/C: intrinsic microkinetics and transport phenomena. Chemical Engineering Journal, 2018, 333: 240–259

    Article  Google Scholar 

  29. Ishikawa M, Tamura M, Nakagawa Y, Tomishige K. Demethoxylation of guaiacol and methoxybenzenes over carbon-supported Ru-Mn catalyst. Applied Catalysis B: Environmental, 2016, 182: 193–203

    Article  CAS  Google Scholar 

  30. Yu S, Zhao P, Yang X, Li Q, Mohamed B A, Saad J M, Zhang Y, Zhou H. Low-temperature hydrothermal carbonization of pectin enabled by high pressure. Journal of Analytical and Applied Pyrolysis, 2022, 166: 105627

    Article  CAS  Google Scholar 

  31. Wang X, Arai M, Wu Q, Zhang C, Zhao F. Hydrodeoxygenation of lignin-derived phenolics—a review on the active sites of supported metal catalysts. Green Chemistry, 2020, 22(23): 8140–8168

    Article  CAS  Google Scholar 

  32. Song W, He Y, Lai S, Lai W, Yi X, Yang W, Jiang X. Selective hydrodeoxygenation of lignin phenols to alcohols in the aqueous phase over a hierarchical Nb2O5-supported Ni catalyst. Green Chemistry, 2020, 22(5): 1662–1670

    Article  CAS  Google Scholar 

  33. Yu S, Yang X, Li Q, Zhang Y, Zhou H. Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure. Green Energy & Environment, 2023, 8(4): 1216–1227

    Article  CAS  Google Scholar 

  34. Sevilla M, Fuertes A B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 2009, 47(9): 2281–2289

    Article  CAS  Google Scholar 

  35. Lin Q, Zhang C, Wang X, Cheng B, Mai N, Ren J. Impact of activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses. Catalysis Today, 2019, 319: 31–40

    Article  CAS  Google Scholar 

  36. Chieng B W, Lee S H, Ibrahim N A, Then Y Y, Loo Y Y. Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers, 2017, 9(12): 355

    Article  PubMed  PubMed Central  Google Scholar 

  37. Norouzi O, Pourhosseini S, Naderi H R, Di Maria F, Dutta A. Integrated hybrid architecture of metal and biochar for high performance asymmetric supercapacitors. Scientific Reports, 2021, 11(1): 5387

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eun K S, Hu K J, Keun K D, Chul H H, Lee K Y, Joo K H. Na-modified carbon nitride as a leach-resistant and cost-effective solid base catalyst for biodiesel production. Fuel, 2023, 341: 127548

    Article  Google Scholar 

  39. Wang L, Zhang H, Cao G, Zhang W, Zhao H, Yang Y. Effect of activated carbon surface functional groups on nano-lead electrodeposition and hydrogen evolution and its applications in lead-carbon batteries. Electrochimica Acta, 2015, 186: 654–663

    Article  CAS  Google Scholar 

  40. Mandrino D, Podgornik B. XPS investigations of tribofilms formed on CrN coatings. Applied Surface Science, 2017, 396: 554–559

    Article  ADS  CAS  Google Scholar 

  41. Chen X, Wang X, Fang D. A review on C1s XPS-spectra for some kinds of carbon materials. Fullerenes, Nanotubes, and Carbon Nanostructures, 2020, 28(12): 1048–1058

    Article  ADS  CAS  Google Scholar 

  42. Dang Y, Wang J, He J, Feng X, Tobin Z, Achola L A, Zhao W, Wen L, Suib S L. RuO2−NiO nanosheets on conductive nickel foam for reliable and regeneratable seawater splitting. ACS Applied Nano Materials, 2022, 5(9): 13308–13318

    Article  CAS  Google Scholar 

  43. Silva C C C, Ribeiro N F, Souza M M, Aranda D A. Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst. Fuel Processing Technology, 2010, 91(2): 205–210

    Article  CAS  Google Scholar 

  44. Long J, Shu S, Wu Q, Yuan Z, Wang T, Xu Y, Zhang X, Zhang Q, Ma L. Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO. Energy Conversion and Management, 2015, 105: 570–577

    Article  CAS  Google Scholar 

  45. Zhang C, Jia C, Cao Y, Yao Y, Xie S, Zhang S, Lin H. Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process. Green Chemistry, 2019, 21(7): 1668–1679

    Article  CAS  Google Scholar 

  46. Hossain M A, Phung T K, Rahaman M S, Tulaphol S, Jasinski J B, Sathitsuksanoh N. Catalytic cleavage of the β-O-4 aryl ether bonds of lignin model compounds by Ru/C catalyst. Applied Catalysis A, General, 2019, 582: 117100

    Article  CAS  Google Scholar 

  47. Gilkey M J, Panagiotopoulou P, Mironenko A V, Jenness G R, Vlachos D G, Xu B. Mechanistic insights into metal lewis acid-mediated catalytic transfer hydrogenation of furfural to 2-methylfuran. ACS Catalysis, 2015, 5(7): 3988–3994

    Article  CAS  Google Scholar 

  48. Zhang M, Xiang L, Fan G, Yang L, Li F. Unveiling the role of surface basic sites on ruthenium-based nanocatalysts for enhanced hydrodeoxygenation of guaiacol. Molecular Catalysis, 2022, 533: 112794

    Article  CAS  Google Scholar 

  49. Xu H, Ju J, Li H. Toward efficient heterogeneous catalysts for in-situ hydrodeoxygenation of biomass. Fuel, 2022, 320: 123891

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (Grant No. 52276202), the National Key R&D Program of China (Grant No. 2020YFC1910100), the Tsinghua University-Shanxi Clean Energy Research Institute Innovation Project Seed Fund, Huaneng Group Science and Technology Research Project (Grant No. KTHT-U22YYJC12), the International Joint Mission On Climate Change and Carbon Neutrality, Tsinghua-Toyota Joint Research Fund, and State Key Laboratory of Chemical Engineering (Grant No. SKL-ChE-22A03) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijie Yu or Hui Zhou.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Yu, S., Li, Q. et al. Selective hydrodeoxygenation of guaiacol to cyclohexanol using activated hydrochar-supported Ru catalysts. Front. Chem. Sci. Eng. 18, 50 (2024). https://doi.org/10.1007/s11705-024-2409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2409-1

Keywords

Navigation