Skip to main content
Log in

Denitrification performance and sulfur resistance mechanism of Sm-Mn catalyst for low temperature NH3-SCR

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

MnOx and Sm-Mn catalysts were prepared with the coprecipitation method, and they showed excellent activities and sulfur resistances for the selective catalytic reduction of NOx by NH3 between 50 and 300 °C in the presence of excess oxygen. 0.10Sm-Mn catalyst indicated better catalytic activity and sulfur resistance. Additionally, the Sm doping led to multi-aspect impacts on the phases, morphology structures, gas adsorption, reactions process, and specific surface areas. Therefore, it significantly enhances the NO conversion, N2 selectivity, and sulfur resistance. Based on various experimental characterization results, the reaction mechanism of catalysts and the effect of SO2 on the reaction process about the catalysts were extensively explored. For 0.10Sm-Mn catalyst, manganese sulfate and sulfur ammonium cannot be generated broadly under the influence of SO2 and the amount of surface adsorbed oxygen. The Bronsted acid sites strengthen significantly due to the addition of SO2, enhancing the sulfur resistance of the 0.10Sm-Mn catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng Z, Chen L H, Sun M H, Wu P, Cai C, Deng Z, Li Y, Zheng W H, Su B L. Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3. Frontiers of Chemical Science and Engineering, 2018, 12(1): 43–49

    Article  CAS  Google Scholar 

  2. Damma D, Pappas D K, Boningari T, Smirniotis P G. Study of Ce, Sb, and Y exchanged titania nanotubes and superior catalytic performance for the selective catalytic reduction of NOx. Applied Catalysis B: Environmental, 2021, 287: 119939

    Article  CAS  Google Scholar 

  3. Fang D, Qi K, Li F X, He F, Xie J L. Excellent sulfur tolerance performance over Fe-SO4/TiO2 catalysts for NH3-SCR: influence of sulfation and Fe-based sulfates. Journal of Environmental Chemical Engineering, 2022, 10(1): 107038

    Article  CAS  Google Scholar 

  4. Yang W W, Liu F D, Xie L J, Lian Z H, He H. Effect of V2O5 additive on the SO2 resistance of a Fe2O3/AC catalyst for NH3-SCR of NOx at low temperatures. Industrial & Engineering Chemistry Research, 2016, 55(10): 2677–2685

    Article  CAS  Google Scholar 

  5. Fang D, He F, Xie J L, Fu Z B, Chen J F. Effects of atmospheres and precursors on MnOx/TiO2 catalysts for NH3-SCR at low temperature. Journal of Wuhan University of Technology-Materials Science Edition, 2013, 28(5): 888–892

    Article  CAS  Google Scholar 

  6. Fang D, Xie J L, Hu H, Yang H, He F, Fu Z B. Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chemical Engineering Journal, 2015, 271: 23–30

    Article  CAS  Google Scholar 

  7. Fang D, He F, Xie J L. Characterization and performance of common alkali metals and alkaline earth metals loaded Mn/TiO2 catalysts for NOx removal with NH3. Journal of the Energy Institute, 2019, 92(2): 319–331

    Article  CAS  Google Scholar 

  8. Xiong S C, Peng Y, Wang D, Huang N, Zhang Q F, Yang S J, Chen J J, Li J H. The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: improvement of low-temperature activity and sulfur resistance. Chemical Engineering Journal, 2020, 387: 124090

    Article  CAS  Google Scholar 

  9. Kantcheva M. Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts. Journal of Catalysis, 2001, 204(2): 479–494

    Article  CAS  Google Scholar 

  10. Wu X M, Yu X L, He X Y, Jing G H. Insight into low-temperature catalytic NO reduction with NH3 on Ce-doped manganese oxide octahedral molecular sieves. Journal of Physical Chemistry C, 2019, 123(17): 10981–10990

    Article  CAS  Google Scholar 

  11. Thirupathi B, Smirniotis G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Applied Catalysis B: Environmental, 2011, 110: 195–206

    Article  CAS  Google Scholar 

  12. Roy S, Viswanath B, Hegde M S, Madras G. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2−δ(M = Cr, Mn, Fe, Co, Cu). Journal of Physical Chemistry C, 2008, 112(15): 6002–6012

    Article  CAS  Google Scholar 

  13. Yu J, Guo F, Wang Y L, Zhu J H, Liu Y Y, Su F B, Gao S Q, Xu G W. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B: Environmental, 2010, 95(1–2): 160–168

    Article  CAS  Google Scholar 

  14. Chen J Y, Fu P, Lv D F, Chen Y, Fan M L, Wu J L, Meshram A, Mu B, Li X, Xia Q B. Unusual positive effect of SO2 on Mn-Ce mixed-oxide catalyst for the SCR reaction of NOx with NH3. Chemical Engineering Journal, 2021, 407: 127071

    Article  CAS  Google Scholar 

  15. Jin R B, Liu Y, Wang Y, Cen W L, Wu Z B, Wang H Q, Weng X L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Applied Catalysis B: Environmental, 2014, 148–149: 582–588

    Article  Google Scholar 

  16. Lu W, Cui S P, Guo H X, Ma X Y, Zhang L J. DRIFT and DFT study of cerium addition on SO2 of manganese-based catalysts for low temperature SCR. Journal of Molecular Catalysis A: Chemical, 2016, 421: 102–108

    Article  Google Scholar 

  17. Wu Z B, Jin R B, Wang H Q, Liu Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catalysis Communications, 2009, 10(6): 935–939

    Article  CAS  Google Scholar 

  18. Gan L A, Li K Z, Yang W N, Chen J J, Peng Y, Li J H. Core-shell-like structured α-MnO2@CeO2 catalyst for selective catalytic reduction of NO: promoted activity and SO2 tolerance. Chemical Engineering Journal, 2020, 391: 123473

    Article  CAS  Google Scholar 

  19. Chen C, Xie H D, He P W, Liu X, Yang C, Wang N, Ge C M. Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method. Applied Surface Science, 2022, 571: 151285

    Article  CAS  Google Scholar 

  20. Lu W, Wang Z W, Liu Y X, Guo G S, Dai H X, Cui S P, Deng J G. Support promotion effect on the SO2 and K+ co-poisoning resistance of MnO2/TiO2 for NH3-SCR of NO. Journal of Hazardous Materials, 2021, 416: 126117

    Article  Google Scholar 

  21. Han Z C, Yu Q B, Xue Z J, Liu K J, Qin Q. Sm-doped manganese-based Zr-Fe polymeric pillared interlayered montmorillonite for low temperature selective catalytic reduction of NOx by NH3 in metallurgical sintering flue gas. RSC Advances, 2018, 8(73): 42017–42024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meng D M, Zhan W C, Guo Y, Guo Y L, Wang L, Lu G Z. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: promotional role of Sm and its catalytic performance. ACS Catalysis, 2015, 5(10): 5973–5983

    Article  CAS  Google Scholar 

  23. Liu L J, Xu K, Su S, He L M, Qing M X, Chi H Y, Liu T, Hu S, Wang Y, Xiang J. Efficient Sm modified Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature. Applied Catalysis A: General, 2020, 592: 117413

    Article  CAS  Google Scholar 

  24. Chen L, Yang J, Ren S, Chen Z C, Zhou Y H, Liu W Z. Effects of Sm modification on biochar supported Mn oxide catalysts for low-temperature NH3-SCR of NO. Journal of the Energy Institute, 2021, 98: 234–243

    Article  CAS  Google Scholar 

  25. Fang D, He F, Liu X Q, Qi K, Xie J L, Li F X, Yu C Q. Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: promotional effect of Mg doping. Applied Surface Science, 2018, 427: 45–55

    Article  CAS  Google Scholar 

  26. Fang D, Xie J L, Hu H, Zhang Z, He F, Zheng Y, Zhang Q. Effects of precursors and preparation methods on the potassium deactivation of MnOx/TiO2 catalysts for NO removal. Fuel Processing Technology, 2015, 134: 465–472

    Article  CAS  Google Scholar 

  27. Fang D, Li D, He F, Xie J L, Xiong C C, Chen Y L. Experimental and DFT study of the adsorption and activation of NH3 and NO on Mn-based spinels supported on TiO2 catalysts for SCR of NOx. Computational Materials Science, 2019, 160: 374–381

    Article  CAS  Google Scholar 

  28. Fang D, Hou S S, Ye Y Y, Jin Q Q, He F, Xie J L. Insight into highly efficient FeOx catalysts for the selective catalytic reduction of NOx by NH3: experimental and DFT study. Applied Surface Science, 2022, 599: 153998

    Article  CAS  Google Scholar 

  29. Powell C J. Calibrations and checks of the binding-energy scales of X-ray photoelectron spectrometers. Journal of Electron Spectroscopy and Related Phenomena, 2022, 257: 146808

    Article  CAS  Google Scholar 

  30. Fang D, He F, Xie J L, Xue L H. Calibration of binding energy positions with C1s for XPS results. Journal of Wuhan University of Technology-Materials Science Edition, 2020, 35(4): 711–718

    Article  CAS  Google Scholar 

  31. Sun C Z, Liu H, Chen W, Chen D Z, Yu S H, Liu A N, Dong L, Feng S. Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOJ-TiO2 catalyst for the NH3-SCR reaction. Chemical Engineering Journal, 2018, 347: 27–40

    Article  CAS  Google Scholar 

  32. Chen Z C, Ren S, Wang M M, Yang J, Chen L, Liu W Z, Liu Q C, Su B. Insights into samarium doping effects on catalytic activity and SO2 tolerance of MnFeOx catalyst for low-temperature NH3-SCR reaction. Fuel, 2022, 321: 124113

    Article  CAS  Google Scholar 

  33. Qi G S, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. Journal of Catalysis, 2013, 217(2): 434–441

    Article  Google Scholar 

  34. Mao L Q, T-Raissi A, Huang C, Muradov N Z. Thermal decomposition of (NH4)2SO4 in presence of Mn3O4. International Journal of Hydrogen Energy, 2011, 36(10): 5822–5827

    Article  CAS  Google Scholar 

  35. Tseng T K, Chu H, Hsu H H. Characterization of γ-alumina-supported manganese oxide as an incineration catalyst for trichloroethylene. Environmental Science & Technology, 2003, 37(1): 171–176

    Article  CAS  Google Scholar 

  36. Jin R B, Liu Y, Wu Z B, Wang H Q, Gu T T. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study. Chemosphere, 2010, 78(9): 1160–1166

    Article  CAS  PubMed  Google Scholar 

  37. Qi G S, Yang R T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. Journal of Physical Chemistry B, 2004, 108(40): 15738–15747

    Article  CAS  Google Scholar 

  38. Mihaylov M, Chakarova K, Hadjiivanov K. Formation of carbonyl and nitrosyl complexes on titania- and zirconia-supported nickel: FTIR spectroscopy study. Journal of Catalysis, 2004, 228(2): 273–281

    Article  CAS  Google Scholar 

  39. Zhou C C, Zhang Y P, Wang X L, Xu H T, Sun K Q, Shen K. Influence of the addition of transition metals (Cr, Zr, Mo) on the properties of MnOx-FeOx catalysts for low-temperature selective catalytic reduction of NOx by ammonia. Journal of Colloid and Interface Science, 2013, 392: 319–324

    Article  CAS  PubMed  Google Scholar 

  40. Atribak I, Azambre B, Lopez A B, Garcia-Garcia A. Effect of NOx adsorption/desorption over ceria-zirconia catalysts on the catalytic combustion of model soot. Applied Catalysis B: Environmental, 2009, 92(1–2): 126–137

    Article  CAS  Google Scholar 

  41. Kijlstra W S, Brands D S, Poels E K, Bliek A. Kinetics of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 catalysts at low temperatures. Catalysis Today, 1999, 50(1): 133–140

    Article  Google Scholar 

  42. Kijlstra W S, Brands D S, Smit H I, Poels E K, Bliek A. Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3. Journal of Catalysis, 1997, 171(1): 208–218

    Article  CAS  Google Scholar 

  43. Hadjiivanov K I. Identification of neutral and charged NxOysurface species by IR spectroscopy. Catalysis Reviews, 2007, 42(1): 71–144

    Google Scholar 

  44. Wang W C, McCool G, Kapur N, Yuan G, Shan B, Nguyen M, Graham U M, Davis B H, Jacobs G, Cho K, Hao X K. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust. Science, 2012, 337(6096): 832–835

    Article  CAS  PubMed  Google Scholar 

  45. Yan L J, Liu Y Y, Zha K W, Li H R, Shi L Y, Zhang D S. Scale-activity relationship of MnOx-FeOy nanocage catalysts derived from Prussian blue analogues for low-temperature NO reduction: experimental and DFT studies. ACS Applied Materials & Interfaces, 2017, 9(3): 2581–2593

    Article  CAS  Google Scholar 

  46. Liu S, Wu X D, Weng D, Rui R. NOx-assisted soot oxidation on Pt-Mg/Al2O3 catalysts: magnesium precursor, Pt particle size, and Pt-Mg interaction. Industrial & Engineering Chemistry Research, 2012, 51(5): 2271–2279

    Article  Google Scholar 

  47. Smirniotis P G, Sreekanth P M, Penna D A, Jenkins R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: a comparison for low-temperature SCR of NO with NH3. Industrial & Engineering Chemistry Research, 2006, 45(19): 6436–6443

    Article  CAS  Google Scholar 

  48. Ren W, Zhao B, Zhuo Y Q, Chen C. Catalytic mechanism of NaY zeolite supported FeSO4 catalyst for selective catalytic reduction of NOx. In: Qi H, Zhao B, eds. 7th International Symposium on Coal Combustion. Berlin: Springer. 2012: 357–362

    Google Scholar 

  49. Holmgreen E M, Yung M, Ozkan Y U S. Pd-based sulfated zirconia prepared by a single step sol-gel procedure for lean NOx reduction. Journal of Molecular Catalysis A: Chemical, 2007, 270(1–2): 101–111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52102367) and the Fundamental Research Funds for the Central Universities (WUT, effect of the synthesis method on denitrification performances of the Mn-based spinel catalysts).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Ye, Y., Li, Q. et al. Denitrification performance and sulfur resistance mechanism of Sm-Mn catalyst for low temperature NH3-SCR. Front. Chem. Sci. Eng. 17, 617–633 (2023). https://doi.org/10.1007/s11705-022-2258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2258-8

Keywords

Navigation