Skip to main content
Log in

A density functional theory study of methane activation on MgO supported Ni9M1 cluster: role of M on C-H activation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Methane activation is a pivotal step in the application of natural gas converting into high-value added chemicals via methane steam/dry reforming reactions. Ni element was found to be the most widely used catalyst. In present work, methane activation on MgO supported Ni-M (M = Fe, Co, Cu, Pd, Pt) cluster was explored through detailed density functional theory calculations, compared to pure Ni cluster. CH4 adsorption on Cu promoted Ni cluster requires overcoming an energy of 0.07 eV, indicating that it is slightly endothermic and unfavored to occur, while the adsorption energies of other promoters M (M = Fe, Co, Pd and Pt) are all higher than that of pure Ni cluster. The role of M on the first C-H bond cleavage of CH4 was investigated. Doping elements of the same period in Ni cluster, such as Fe, Co and Cu, for C-H bond activation follows the trend of the decrease of metal atom radius. As a result, Ni-Fe shows the best ability for C-H bond cleavage. In addition, doping the elements of the same family, like Pd and Pt, for CH4 activation is according to the increase of metal atom radius. Consequently, C-H bond activation demands a lower energy barrier on Ni-Pt cluster. To illustrate the adsorptive dissociation behaviors of CH4 at different Ni-M clusters, the Mulliken atomic charge was analyzed. In general, the electron gain of CH4 binding at different Ni-M clusters follows the sequence of Ni-Cu (−0.02 e) < Ni (−0.04 e) < Ni-Pd (−0.08 e) < Ni-Pt (−0.09 e) < Ni-Co (−0.10 e) < Ni-Fe (−0.12 e), and the binding strength between catalysts and CH4 raises with the CH4 electron gain increasing. This work provides insights into understanding the role of promoter metal M on thermal-catalytic activation of CH4 over Ni/MgO catalysts, and is useful to interpret the reaction at an atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin B, Kuang Y. Natural gas subsidies in the industrial sector in China: national and regional perspectives. Applied Energy, 2020, 260:114329

    Article  Google Scholar 

  2. Dale S. BP Energy Outlook 2018. BP Website, 2018

  3. Taifan W, Baltrusaitis J. CH4 conversion to value added products: potential, limitations and extensions of a single step heterogeneous catalysis. Applied Catalysis B: Environmental, 2016, 198: 525–547

    Article  CAS  Google Scholar 

  4. Schwach P, Pan X, Bao X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chemical Reviews, 2017, 117(13): 8497–8520

    Article  CAS  PubMed  Google Scholar 

  5. Song Y, Ozdemir E, Ramesh S, Adishev A, Subramanian S, Harale A, Albuali M, Fadhel B A, Jamal A, Moon D, Choi S H, Yavuz C T. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science, 2020, 367(6479): 777–781

    Article  CAS  PubMed  Google Scholar 

  6. Buelens L C, Galvita V V, Poelman H, Detavernier C, Marin G B. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science, 2016, 354(6311): 449–152

    Article  CAS  PubMed  Google Scholar 

  7. Liu H, Wierzbicki D, Debek R, Motak M, Grzybek T, Da Costa P, Gálvez M E. La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures. Fuel, 2016, 182: 8–16

    Article  CAS  Google Scholar 

  8. Wang H, Blaylock D W, Dam A H, Liland S E, Rout K R, Zhu Y A, Green W H, Holmen A, Chen D. Steam methane reforming on a Ni-based bimetallic catalyst: density functional theory and experimental studies of the catalytic consequence of surface alloying of Ni with Ag. Catalysis Science & Technology, 2017, 7(8): 1713–1725

    Article  CAS  Google Scholar 

  9. Niu J, Wang Y, Qi Y, Dam A H, Wang H, Zhu Y A, Holmen A, Ran J, Chen D. New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study. Fuel, 2020, 266: 117143

    Article  CAS  Google Scholar 

  10. Niu J, Ran J, Chen D. Understanding the mechanism of CO2 reforming of methane to syngas on Ni@Pt surface compared with Ni(111) and Pt(111). Applied Surface Science, 2020, 513: 145840

    Article  CAS  Google Scholar 

  11. Niu J, Du X, Ran J, Wang R. Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling. Applied Surface Science, 2016, 376: 79–90

    Article  CAS  Google Scholar 

  12. Dębek R, Motak M, Duraczyska D, Launay F, Galvez M E, Grzybek T, Da Costa P. Methane dry reforming over hydrotalcite-derived Ni-MgAl mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability. Catalysis Science & Technology, 2016, 6(17): 6705–6715

    Article  Google Scholar 

  13. Li S, Gong J. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chemical Society Reviews, 2014, 43(21): 7245–7256

    Article  CAS  PubMed  Google Scholar 

  14. Niu J, Liland S E, Yang J, Rout K R, Ran J, Chen D. Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane. Chemical Engineering Journal, 2019, 377: 119763

    Article  CAS  Google Scholar 

  15. Wei J M, Iglesia E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. Journal of Catalysis, 2004, 224(2): 370–383

    Article  CAS  Google Scholar 

  16. Foppa L, Margossian T, Kim S M, Müller C, Copéret C, Larmier K, Comas-Vives A. Contrasting the role of Ni/Al2O3 interfaces in water-gas shift and dry reforming of methane. Journal of the American Chemical Society, 2017, 139(47): 17128–17139

    Article  CAS  PubMed  Google Scholar 

  17. Niu J, Liu H, Jin Y, Fan B, Qi W, Ran J. Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: insights from experimental work and theoretical analysis. International Journal of Hydrogen Energy, 2022, 47(15): 9183–9200

    Article  CAS  Google Scholar 

  18. Marcinkowski M D, Darby M T, Liu J, Wimble J M, Lucci F R, Lee S, Michaelides A, Flytzani-Stephanopoulos M, Stamatakis M, Sykes E C H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. Nature Chemistry, 2018, 10(3): 325–332

    Article  CAS  PubMed  Google Scholar 

  19. Huang Y, Du J, Ling C, Zhou T, Wang S. Methane dehydrogenation on Au/Ni surface alloys—a first-principles study. Catalysis Science & Technology, 2013, 3(5): 1343–1354

    Article  CAS  Google Scholar 

  20. Liu H, Yan R, Zhang R, Wang B, Xie K. A DFT theoretical study of CH4 dissociation on gold-alloyed Ni(111) surface. Journal of Natural Gas Chemistry, 2011, 20(6): 611–617

    Article  CAS  Google Scholar 

  21. Niu J, Ran J, Du X, Qi W, Zhang P, Yang L. Effect of Pt addition on resistance to carbon formation of Ni catalysts in methane dehydrogenation over Ni-Pt bimetallic surfaces: a density functional theory study. Molecular Catalysis, 2017, 434: 206–218

    Article  CAS  Google Scholar 

  22. Zhang M, Yang K, Zhang X, Yu Y. Effect of Ni(111) surface alloying by Pt on partial oxidation of methane to syngas: a DFT study. Surface Science, 2014, 630: 236–243

    Article  CAS  Google Scholar 

  23. Bothra P, Pati S K. Improved catalytic activity of rhodium monolayer modified nickel (110) surface for the methane dehydrogenation reaction: a first-principles study. Nanoscale, 2014, 6(12): 6738–6744

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Y, Li S, Sun Y. Theoretical study on the dissociative adsorption of CH4 on Pd-doped Ni surfaces. Chinese Journal of Catalysis, 2013, 34(5): 911–922

    Article  CAS  Google Scholar 

  25. Li K, Li M, Wang Y, Wu Z. Theoretical study on the effect of Mn promoter for CO2 reforming of CH4 on the Ni(111) surface. Fuel, 2020, 274: 117849

    Article  CAS  Google Scholar 

  26. Fan C, Zhu Y A, Xu Y, Zhou Y, Zhou X G, Chen D. Origin of synergistic effect over Ni-based bimetallic surfaces: a density functional theory study. Journal of Chemical Physics, 2012, 137(1): 014703

    Article  PubMed  Google Scholar 

  27. Roy G, Chattopadhyay A P. Dissociation of methane on Ni4 cluster—a DFT study. Computational & Theoretical Chemistry, 2017, 1106: 7–14

    Article  CAS  Google Scholar 

  28. Jackson B, Nave S. The dissociative chemisorption of methane on Ni(100): reaction path description of mode-selective chemistry. Journal of Chemical Physics, 2011, 135(11): 114701

    Article  PubMed  Google Scholar 

  29. Cataphan R C, Oliveira A A M, Chen Y, Vlachos D G. DFT study of the water-gas shift reaction and coke formation on Ni(111) and Ni(211) surfaces. Journal of Physical Chemistry C, 2012, 116(38): 20281–20291

    Article  Google Scholar 

  30. Wang Z, Cao X M, Zhu J, Hu P. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. Journal of Catalysis, 2014, 311: 469–480

    Article  CAS  Google Scholar 

  31. Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Iterative minimization techniques for ab initio total-nerryy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992, 64(4): 1045–1097

    Article  CAS  Google Scholar 

  32. Delley B. Fast calculation of electrostatics in crystals and large molecules. Journal of Physical Chemistry, 1996, 100(15): 6107–6110

    Article  CAS  Google Scholar 

  33. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  CAS  PubMed  Google Scholar 

  34. Niu J, Ran J, Qi W, Ou Z, He W. Identification of active sites in CO2 activation on MgO supported Ni cluster. International Journal of Hydrogen Energy, 2020, 45(19): 11108–11115

    Article  CAS  Google Scholar 

  35. Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Physical Review. B, Solid State, 1976, 13(12): 5188–5192

    Article  Google Scholar 

  36. Halgren T A, Lipscomb W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chemical Physics Letters, 1977, 49(2): 225–232

    Article  CAS  Google Scholar 

  37. Niu J, Guo F, Ran J, Qi W, Yang Z. Methane dry (CO2) reforming to syngas (H2/CO) in catalytic process: from experimental study and DFT calculations. International Journal of Hydrogen Energy, 2020, 45(55): 30267–30287

    Article  CAS  Google Scholar 

  38. Pan C, Guo Z, Dai H, Ren R, Chu W. Anti-sintering mesoporous Ni-Pd bimetallic catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy, 2020, 45(32): 16133–16143

    Article  CAS  Google Scholar 

  39. Chaichi A, Sadrnezhaad S K, Malekjafarian M. Synthesis and characterization of supportless Ni-Pd-CNT nanocatalyst for hydrogen production via steam reforming of methane. International Journal of Hydrogen Energy, 2018, 43(3): 1319–1336

    Article  CAS  Google Scholar 

  40. Niu J, Wang Y, Liland S E, Regli S K, Yang J, Rout K R, Luo J, Rønning M, Ran J, Chen D. Unraveling enhanced activity, selectivity, and coke-resistance of Pt-Ni bimetallic clusters in dry reforming. ACS Catalysis, 2021, 11(4): 2398–2411

    Article  CAS  Google Scholar 

  41. Xie Z, Yan B, Lee J H, Wu Q, Li X, Zhao B, Su D, Zhang L, Chen J G. Effects of oxide supports on the CO2 reforming of ethane over Pt-Ni bimetallic catalysts. Applied Catalysis B: Environmental, 2019, 245: 376–388

    Article  CAS  Google Scholar 

  42. Turap Y, Wang I, Fu T, Wu Y, Wang Y, Wang W. Co-Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2020, 45(11): 6538–6548

    Article  CAS  Google Scholar 

  43. Qiu H, Ran J, Niu J, Guo F, Ou Z. Effect of different doping ratios of Cu on the carbon formation and the elimination on Ni(111) surface: a DFT study. Molecular Catalysis, 2021, 502: 111360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the projects supported by the National Natural Science Foundation of China (Grant No. 52106179), the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302124017), the Natural Science Foundation of Chongqing, China (Grant No. cstc2020jcyj-msxmX0454), the Scientific and Technological Activities for Overseas Students of Shanxi Province, China Grant No. 20200016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntian Niu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Liu, H., Jin, Y. et al. A density functional theory study of methane activation on MgO supported Ni9M1 cluster: role of M on C-H activation. Front. Chem. Sci. Eng. 16, 1485–1492 (2022). https://doi.org/10.1007/s11705-022-2169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2169-8

Keywords

Navigation