Skip to main content
Log in

Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

As an important zeolite material, MFI zeolites, as well as their controllable synthesis, are of great interest in both basic and applied science. Among the developed synthetic approaches, the seed-induced method has gradually evolved into a facile, low-cost, and even green alternative to give zeolites the desirable physicochemical properties. In this review, we briefly summarize the development of seed-induced syntheses of diverse functional MFI zeolites, where the “living” seed crystals not only direct the formation of zeolitic framework but also function as special “templates” or “units” to fine-tune the zeolite materials with diverse sizes, shapes, compositions, morphologies and pore structures. Moreover, on the basis of their structural features and crystallization behaviors in seed-induced synthesis, we reveal the roles of seeds and discuss the related crystallization mechanisms including both classical and non-classical pathways. We also want to guide readers to investigate the structure-performance relationships between these functional MFI zeolite catalysts and suitable catalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corma A, Martinez A. Zeolites and zeotypes as catalysts. Advanced Materials, 1995, 7(2): 137–144

    CAS  Google Scholar 

  2. Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821

    CAS  PubMed  Google Scholar 

  3. Shi J, Wang Y D, Yang W M, Tang Y, Xie Z K. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44(24): 8877–8903

    CAS  PubMed  Google Scholar 

  4. Hartmann M, Machoke A G, Schwieger W. Catalytic test reactions for the evaluation of hierarchical zeolites. Chemical Society Reviews, 2016, 45(12): 3313–3330

    CAS  PubMed  Google Scholar 

  5. Shamzhy M, Opanasenko M, Concepción P, Martínez A. New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149

    CAS  PubMed  Google Scholar 

  6. Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702

    CAS  PubMed  Google Scholar 

  7. Serrano D P, Escola J M, Pizarro P. Synthesis strategies in the search for hierarchical zeolites. Chemical Society Reviews, 2013, 42(9): 4004–4035

    CAS  PubMed  Google Scholar 

  8. Meng X J, Xiao F S. Green routes for synthesis of zeolites. Chemical Reviews, 2014, 114(2): 1521–1543

    CAS  PubMed  Google Scholar 

  9. Schwieger W, Machoke A G, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45(12): 3353–3376

    CAS  PubMed  Google Scholar 

  10. Masoumifard N, Guillet-Nicolas R, Kleitz F. Synthesis of engineered zeolitic materials: From classical zeolites to hierarchical core-shell materials. Advanced Materials, 2018, 30(16): 1704439

    Google Scholar 

  11. Majano G, Darwiche A, Mintova S, Valtchev V. Seed-induced crystallization of nanosized Na-ZSM-5 crystals. Industrial & Engineering Chemistry Research, 2009, 48(15): 7084–7091

    CAS  Google Scholar 

  12. Ren N, Yang Z J, Lv X C, Shi J, Zhang Y H, Tang Y. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology. Microporous and Mesoporous Materials, 2010, 131(1–3): 103–114

    CAS  Google Scholar 

  13. Iyoki K, Kamimura Y, Itabashi K, Shimojima A, Okubo T. Synthesis of MTW-type zeolites in the absence of organic structure-directing agent. Chemistry Letters, 2010, 39(7): 730–731

    CAS  Google Scholar 

  14. Kamimura Y, Itabashi K, Okubo T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “green MTW” from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 2012, 147(1): 149–156

    Google Scholar 

  15. Yu Q J, Chen J, Zhang Q, Li C Y, Cui Q K. Micron ZSM-11 microspheres seed-assisted synthesis of hierarchical submicron ZSM-11 with intergrowth morphology. Materials Letters, 2014, 120: 97–100

    CAS  Google Scholar 

  16. Snyder M A, Tsapatsis M. Hierarchical nanomanufacturing: From shaped zeolite nanoparticles to high-performance separation membranes. Angewandte Chemie International Edition, 2007, 46(40): 7560–7573

    CAS  PubMed  Google Scholar 

  17. Chen L H, Li X Y, Rooke J C, Zhang Y H, Yang X Y, Tang Y, Xiao F S, Su B L. Hierarchically structured zeolites: Synthesis, mass transport properties and applications. Journal of Materials Chemistry, 2012, 22(34): 17381–17403

    CAS  Google Scholar 

  18. Dong A G, Wang Y J, Tang Y, Ren N, Zhang Y H, Yue J H, Gao Z. Zeolitic tissue through wood cell templating. Advanced Materials, 2002, 14(12): 926–929

    CAS  Google Scholar 

  19. Dong A G, Wang Y J, Tang Y, Ren N, Zhang Y H, Gao Z. Hollow zeolite capsules: A novel approach for fabrication and guest encapsulation. Chemistry of Materials, 2002, 14(8): 3217–3219

    CAS  Google Scholar 

  20. Serrano D P, Aguado J, Escola J M, Rodriguez J M, Peral A. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chemistry of Materials, 2006, 18(10): 2462–2464

    CAS  Google Scholar 

  21. Serrano D P, Aguado J, Escola J M, Rodriguez J M, Peral A. Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units. Journal of Materials Chemistry, 2008, 18(35): 4210–4218

    CAS  Google Scholar 

  22. Zhang H B, Zhao Y, Zhang H X, Wang P C, Shi Z P, Mao J J, Zhang Y H, Tang Y. Tailoring zeolite ZSM-5 crystal morphology/porosity through flexible utilization of silicalite-1 seeds as templates: Unusual crystallization pathways in a heterogeneous system. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(21): 7141–7151

    CAS  Google Scholar 

  23. Zhang H B, Zhang H X, Zhao Y, Shi Z P, Zhang Y H, Tang Y. Seeding bundlelike MFI zeolite mesocrystals: A dynamic, nonclassical crystallization via epitaxially anisotropic growth. Chemistry of Materials, 2017, 29(21): 9247–9255

    CAS  Google Scholar 

  24. De Yoreo J J, Gilbert P U P A, Sommerdijk N A J M, Penn R L, Whitelam S, Joester D, Zhang H Z, Rimer J D, Navrotsky A, Banfield J F, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349(6247): aaa6760

    PubMed  Google Scholar 

  25. Olafson K N, Li R, Alamani B G, Rimer J D. Engineering crystal modifiers: Bridging classical and nonclassical crystallization. Chemistry of Materials, 2016, 28(23): 8453–8465

    CAS  Google Scholar 

  26. Kumar M, Luo H, Roman-Leshkov Y, Rimer J D. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. Journal of the American Chemical Society, 2015, 137(40): 13007–13017

    CAS  PubMed  Google Scholar 

  27. Zhao Y, Zhang H B, Wang P C, Xue F Q, Ye Z, Zhang Y H, Tang Y. Tailoring the morphology of MTW zeolite mesocrystals: Intertwined classical/nonclassical crystallization. Chemistry of Materials, 2017, 29(8): 3387–3396

    CAS  Google Scholar 

  28. Zhang H B, Hu Z J, Huang L, Zhang H X, Song K S, Wang L, Shi Z P, Ma J X, Zhuang Y, Shen W, et al. Dehydration of glycerol to acrolein over hierarchical ZSM-5 zeolites: Effects of mesoporosity and acidity. ACS Catalysis, 2015, 5(4): 2548–2558

    CAS  Google Scholar 

  29. Zhang H B, Song K S, Wang L, Zhang H X, Zhang Y H, Tang Y. Organic structure directing agent-free and seed-induced synthesis of enriched intracrystal mesoporous ZSM-5 zeolite for shape-selective reaction. ChemCatChem, 2013, 5(10): 2874–2878

    CAS  Google Scholar 

  30. Zhang H B, Ma Y C, Song K S, Zhang Y H, Tang Y. Nanocrystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: Effects of accessibility and strength of acid sites. Journal of Catalysis, 2013, 302: 115–125

    CAS  Google Scholar 

  31. Hu Z J, Zhang H B, Wang L, Zhang H X, Zhang Y H, Xu H L, Shen W, Tang Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catalysis Science & Technology, 2014, 4(9): 2891–2895

    CAS  Google Scholar 

  32. Betke U, Lieb A. Micro-macroporous composite materials—preparation techniques and selected applications: A review. Advanced Engineering Materials, 2018, 20(9): 1800252

    Google Scholar 

  33. Buciuman F C, Kraushaar-Czarnetzki B. Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts. Catalysis Today, 2001, 69(1–4): 337–342

    CAS  Google Scholar 

  34. Silva E R, Silva J M, Vaz M F, Oliveira F A C, Ribeiro F. Cationic polymer surface treatment for zeolite washcoating deposited over cordierite foam. Materials Letters, 2009, 63(5): 572–574

    CAS  Google Scholar 

  35. Zhang B, Davis S A, Mann S, Mendelson N H. Bacterial templating of zeolite fibres with hierarchical structure. Chemical Communications, 2000, 9: 781–782

    Google Scholar 

  36. Huang L M, Wang Z B, Sun J Y, Miao L, Li Q Z, Yan Y S, Zhao D Y. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. Journal of the American Chemical Society, 2000, 122(14): 3530–3531

    CAS  Google Scholar 

  37. Jung K T, Hyun J H, Shul Y G, Kim D S. Synthesis of fibrous titanium silicalite (FTS-1) zeolite. Zeolites, 1997, 19(2–3): 161–168

    CAS  Google Scholar 

  38. Jung K T, Hyun J H, Shul Y G, Koo K K. Nanoparticle synthesis of titanium silicalite for fiber, film, and monolith formation. AIChE Journal. American Institute of Chemical Engineers, 1997, 43(S11): 2802–2808

    CAS  Google Scholar 

  39. Wang H T, Huang L M, Wang Z B, Mitra A, Yan Y S. Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions. Chemical Communications, 2001, 15: 1364–1365

    Google Scholar 

  40. Wang Z B, Wang H T, Mitra A, Huang L M, Yan Y S. Pure-silica zeolite low-k dielectric thin films. Advanced Materials, 2001, 13(10): 746–749

    CAS  Google Scholar 

  41. Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277(5330): 1232–1237

    CAS  Google Scholar 

  42. Wang X D, Tang Y, Wang Y J, Gao Z, Yang W L, Fu S K. Fabrication of hollow zeolite spheres. Chemical Communications, 2000, 21: 2161–2162

    Google Scholar 

  43. Wang Y J, Tang Y, Wang X D, Yang W L, Gao Z. Fabrication of hollow zeolite fibers through layer-by-layer adsorption method. Chemistry Letters, 2000, 29(11): 1344–1345

    Google Scholar 

  44. Rhodes K H, Davis S A, Caruso F, Zhang B J, Mann S. Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks. Chemistry of Materials, 2000, 12(10): 2832–2834

    CAS  Google Scholar 

  45. Dong A G, Wang Y J, Wang D J, Yang W L, Zhang Y H, Ren N, Gao Z, Tang Y. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors. Microporous and Mesoporous Materials, 2003, 64(1–3): 69–81

    CAS  Google Scholar 

  46. Dong A A, Wang Y J, Tang Y, Zhang Y H, Ren N, Gao Z. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres. Advanced Materials, 2002, 14(20): 1506–1510

    CAS  Google Scholar 

  47. Valtchev V. Silicalite-1 hollow spheres and bodies with a regular system of macrocavities. Chemistry of Materials, 2002, 14(10): 4371–4377

    CAS  Google Scholar 

  48. Lai Z P, Tsapatsis M, Nicolich J R. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers. Advanced Functional Materials, 2004, 14(7): 716–729

    CAS  Google Scholar 

  49. Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M. Zeolite membranes—a review and comparison with MOFs. Chemical Society Reviews, 2015, 44(20): 7128–7154

    CAS  PubMed  Google Scholar 

  50. Kerr G T. Chemistry of crystalline aluminosilicates. I. factors affecting formation of zeolite A. Journal of Physical Chemistry, 1966, 70(4): 1047–1050

    CAS  Google Scholar 

  51. Kacirek H, Lechert H. Investigations on growth of the zeolite type NaY. Journal of Physical Chemistry, 1975, 79(15): 1589–1593

    CAS  Google Scholar 

  52. Kerr G T. Chemistry of crystalline aluminosilicates. IV. factors affecting formation of zeolites X and B. Journal of Physical Chemistry, 1968, 72(4): 1385–1386

    CAS  Google Scholar 

  53. Dutta P K, Bronic J. Mechanism of zeolite formation—seed gel interaction. Zeolites, 1994, 14(4): 250–255

    CAS  Google Scholar 

  54. Xie B, Song J W, Ren L M, Ji Y Y, Li J X, Xiao F S. Organotemplate-free and fast route for synthesizing Beta zeolite. Chemistry of Materials, 2008, 20(14): 4533–4535

    CAS  Google Scholar 

  55. Ren N, Bronic J, Subotic B, Lv X C, Yang Z J, Tang Y. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1: influence of alkalinity on the structural, particulate and chemical properties of the products. Microporous and Mesoporous Materials, 2011, 139(1–3): 197–206

    CAS  Google Scholar 

  56. Ren N, Bronic J, Subotic B, Song Y M, Lv X C, Tang Y. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 2: Influence of sodium ions and ageing of the reaction mixture on the chemical composition, crystallinity and particulate properties of the products. Microporous and Mesoporous Materials, 2012, 147(1): 229–241

    Google Scholar 

  57. Yu Q J, Zhang Q, Liu J W, Li C Y, Cui Q K. Inductive effect of various seeds on the organic template-free synthesis of zeolite ZSM-5. CrystEngComm, 2013, 15(38): 7680–7687

    CAS  Google Scholar 

  58. Nada M H, Larsen S C. Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous and Mesoporous Materials, 2017, 239: 444–452

    CAS  Google Scholar 

  59. Pan F, Lu X C, Wang T Z, Yan Y. Submicron ZSM-5 synthesized by green and fast route. Materials Letters, 2017, 196: 245–247

    CAS  Google Scholar 

  60. Serrano D P, Aguado J, Morales G, Rodriguez J M, Peral A, Thommes M, Epping J D, Chmelka B F. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009, 21(4): 641–654

    CAS  Google Scholar 

  61. Serrano D P, Pinnavaia T J, Aguado J, Escola J M, Peral A, Villalba L. Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type. Catalysis Today, 2014, 227: 15–25

    CAS  Google Scholar 

  62. Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606

    CAS  PubMed  Google Scholar 

  63. Zhu Y, Hua Z L, Zhou J, Wang L J, Zhao J J, Gong Y, Wu W, Ruan M L, Shi J L. Hierarchical mesoporous zeolites: Direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(51): 14618–14627

    CAS  Google Scholar 

  64. Liu M, Li J H, Jia W Z, Qin M J, Wang Y N, Tong K, Chen H H, Zhu Z R. Seed-induced synthesis of hierarchical ZSM-5 nanosheets in the presence of hexadecyl trimethyl ammonium bromide. RSC Advances, 2015, 5(12): 9237–9240

    CAS  Google Scholar 

  65. Chen H B, Wang Y Q, Sun C, Wang X, Wang C. Synthesis of hierarchical ZSM-5 zeolites with CTAB-containing seed silicalite-1 and its catalytic performance in methanol to propylene. Catalysis Communications, 2018, 112: 10–14

    CAS  Google Scholar 

  66. Zhu Y, Hua Z L, Song Y D, Wu W, Zhou X X, Zhou J, Shi J L. Highly chemoselective esterification for the synthesis of monobutyl itaconate catalyzed by hierarchical porous zeolites. Journal of Catalysis, 2013, 299: 20–29

    CAS  Google Scholar 

  67. Yu Q J, Meng X J, Liu J W, Li C Y, Cui Q K. A fast organic template-free, ZSM-11 seed-assisted synthesis of ZSM-5 with good performance in methanol-to-olefin. Microporous and Mesoporous Materials, 2013, 181: 192–200

    CAS  Google Scholar 

  68. Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 2005, 82(1–2): 1–78

    CAS  Google Scholar 

  69. Warzywoda J, Edelman R D, Thompson R W. Thoughts on the induction time in zeolite crystallization. Zeolites, 1989, 9(3): 187–192

    CAS  Google Scholar 

  70. Zhang H X, Zhang H B, Wang P C, Zhao Y, Shi Z P, Zhang Y H, Tang Y. Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion. RSC Advances, 2016, 6(53): 47623–47631

    CAS  Google Scholar 

  71. Kirschhock C E A, Ravishankar R, Jacobs P A, Martens J A. Aggregation mechanism of nanoslabs with zeolite MFI-type structure. Journal of Physical Chemistry B, 1999, 103(50): 11021–11027

    CAS  Google Scholar 

  72. Davis T M, Drews T O, Ramanan H, He C, Dong J S, Schnablegger H, Katsoulakis M A, Kokkoli E, McCormick A V, Penn R L, Tsapatsis M. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nature Materials, 2006, 5(5): 400–408

    CAS  PubMed  Google Scholar 

  73. Song R Q, Colfen H. Mesocrystals-ordered nanoparticle super-structures. Advanced Materials, 2010, 22(12): 1301–1330

    CAS  PubMed  Google Scholar 

  74. Fang Y M, Hu H Q, Chen G H. In situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology without secondary template. Chemistry of Materials, 2008, 20(5): 1670–1672

    CAS  Google Scholar 

  75. de Moor P P E A, Beelen T P M, Komanschek B U, Beck L W, Wagner P, Davis M E, van Santen R A. Imaging the assembly process of the organic-mediated synthesis of a zeolite. Chemistry (Weinheim an der Bergstrasse, Germany), 1999, 5(7): 2083–2088

    CAS  Google Scholar 

  76. Zheng J W, Zhang W P, Liu Z T, Huo Q S, Zhu K K, Zhou X G, Yuan W K. Unraveling the non-classic crystallization of SAPO-34 in a dry gel system towards controlling meso-structure with the assistance of growth inhibitor: Growth mechanism, hierarchical structure control and catalytic properties. Microporous and Mesoporous Materials, 2016, 225: 74–87

    CAS  Google Scholar 

  77. Zhao Y, Ye Z Q, Wang L, Zhang H B, Xue F Q, Xie S H, Cao X M, Zhang Y H, Tang Y. Engineering fractal MTW zeolite mesocrystal: Particle-based dendritic growth via twinning-plane induced crystallization. Crystal Growth & Design, 2018, 18(2): 1101–1108

    CAS  Google Scholar 

  78. Wang P C, Zhao Y, Zhang H B, Yu T, Zhang Y H, Tang Y. Effect of pyrazolium-derived compounds as templates in zeolite synthesis. RSC Advances, 2017, 7(38): 23272–23278

    CAS  Google Scholar 

  79. Wang L, Zhu S C, Shen M K, Tian H W, Xie S H, Zhang H B, Zhang Y H, Tang Y. Fractal MTW zeolite crystals: Hidden dimensions in nanoporous materials. Angewandte Chemie International Edition, 2017, 56(39): 11764–11768

    CAS  PubMed  Google Scholar 

  80. Kumar M, Li R, Rimer J D. Assembly and evolution of amorphous precursors in zeolite L crystallization. Chemistry of Materials, 2016, 28(6): 1714–1727

    CAS  Google Scholar 

  81. Lupulescu A I, Kumar M, Rimer J D. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society, 2013, 135(17): 6608–6617

    CAS  PubMed  Google Scholar 

  82. Wang L, Yan N N, Liu X N, Zhao X B, Shen M K, Liu L F, Tian P, Guo P, Liu Z M. Unraveling the twin and tunability of the crystal domain sizes in the medium-pore zeolite ZSM-57 by electron crystallography. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(4): 1029–1036

    CAS  Google Scholar 

  83. Socci J, Osatiashtiani A, Kyriakou G, Bridgwater T. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. Applied Catalysis A, General, 2019, 570: 218–227

    CAS  Google Scholar 

  84. Zhang H Y, Wang L, Zhang D L, Meng X J, Xiao F S. Mesoporous and Al-rich MFI crystals assembled with aligned nanorods in the absence of organic templates. Microporous and Mesoporous Materials, 2016, 233: 133–139

    CAS  Google Scholar 

  85. Hoff T C, Gardner D W, Thilakaratne R, Proano-Aviles J, Brown R C, Tessonnier J P. Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis. Applied Catalysis A, General, 2017, 529: 68–78

    CAS  Google Scholar 

  86. Itabashi K, Kamimura Y, Iyoki K, Shimojima A, Okubo T. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent. Journal of the American Chemical Society, 2012, 134(28): 11542–11549

    CAS  PubMed  Google Scholar 

  87. Ji Y Y, Wang Y Q, Xie B, Xiao F S. Zeolite seeds: Third type of structure directing agents in the synthesis of zeolites. Comments on Inorganic Chemistry, 2016, 36(1): 1–16

    CAS  Google Scholar 

  88. Shao J, Fu T J, Ma Q, Ma Z, Zhang C M, Li Z. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, 2019, 273: 122–132

    CAS  Google Scholar 

  89. Ghorbanpour A, Gumidyala A, Grabow L C, Crossley S P, Rimer J D. Epitaxial growth of ZSM-5@Silicalite-1: A core-shell zeolite designed with passivated surface acidity. ACS Nano, 2015, 9(4): 4006–4016

    CAS  PubMed  Google Scholar 

  90. Peng C, Liu Z, Yonezawa Y, Yanaba Y, Katada N, Murayama I, Segoshi S, Okubo T, Wakihara T. Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst. Microporous and Mesoporous Materials, 2019, 277: 197–202

    CAS  Google Scholar 

  91. Li N, Zhang Y Y, Chen L, Au C T, Yin S F. Synthesis and application of HZSM-5@silicalite-1 core-shell composites for the generation of light olefins from CH3Br. Microporous and Mesoporous Materials, 2016, 227: 76–80

    CAS  Google Scholar 

  92. Zhai Y, Zhang S, Shang Y, Song Y, Wang W, Ma T, Zhang L, Gong Y, Xu J, Deng F. Boosting the turnover number ofcore-shell Al-ZSM-5@B-ZSM-5 zeolite for methanol to propylene reaction by modulating its gradient acid site distribution and low consumption diffusion. Catalysis Science & Technology, 2019, 9(3): 659–671

    CAS  Google Scholar 

  93. Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K. Single crystals of ZSM-5/silicalite composites. Advanced Materials, 2005, 17(16): 1985–1988

    CAS  Google Scholar 

  94. Van Vu D, Miyamoto M, Nishiyama N, Ichikawa S, Egashira Y, Ueyama K. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous and Mesoporous Materials, 2008, 115(1–2): 106–112

    Google Scholar 

  95. Vanvu D, Miyamoto M, Nishiyama N, Egashira Y, Ueyama K. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. Journal of Catalysis, 2006, 243(2): 389–394

    Google Scholar 

  96. Zhou W, Zhang S Y, Hao X Y, Guo H, Zhang C, Zhang Y Q, Liu S X. MFI-type boroaluminosilicate: A comparative study between the direct synthesis and the templating method. Journal of Solid State Chemistry, 2006, 179(3): 855–865

    CAS  Google Scholar 

  97. Su X F, Wang G L, Bai X F, Wu W, Xiao L F, Fang Y J, Zhang J W. Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization. Chemical Engineering Journal, 2016, 293: 365–375

    CAS  Google Scholar 

  98. Hsieh C Y, Chen Y Y, Lin Y C. Ga-substituted nanoscale HZSM-5 in methanol aromatization: The cooperative action of the bronsted acid and the extra-framework Ga species. Industrial & Engineering Chemistry Research, 2018, 57(23): 7742–7751

    CAS  Google Scholar 

  99. Jiang X, Su X F, Bai X F, Li Y Z, Yang L, Zhang K, Zhang Y, Liu Y, Wu W. Conversion of methanol to light olefins over nanosized [Fe,Al]ZSM-5 zeolites: Influence of Fe incorporated into the framework on the acidity and catalytic performance. Microporous and Mesoporous Materials, 2018, 263: 243–250

    CAS  Google Scholar 

  100. Qiu F R, Wang X B, Zhang X F, Liu H, Liu S Q, Yeung K L. Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds. Chemical Engineering Journal, 2009, 147(2–3): 316–322

    CAS  Google Scholar 

  101. Serrano D P, Sanz R, Pizarro P, Moreno I. Synthesis of hierarchical TS-1 zeolite from silanized seeds. Topics in Catalysis, 2010, 53(19–20): 1319–1329

    CAS  Google Scholar 

  102. Song W L, Zhang B, Chen L F, Shi J, Cheng X W, Wu L H, Yang W M, Zhou J, Zhang Y H, Tao Y W, Tang Y. An Fe-Mn-Cu/SiO2@silicalite-1 catalyst for CO hydrogenation: The role of the zeolite shell on light-olefin production. Catalysis Science & Technology, 2016, 6(10): 3559–3567

    CAS  Google Scholar 

  103. Shi J, Chen L F, Ren N, Zhang Y H, Tang Y. Zeolitic microcapsule with encapsulated platinum nanoparticles for one-pot tandem reaction of alcohol to hydrazone. Chemical Communications, 2012, 48(68): 8583–8585

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Major Research and Development Plan (Grant No. 2018YFA0209402), the National Natural Science Foundation of China (Grant Nos. 21433022, 21573046, 21473037, U1463206 and 21802023), and Shanghai Sailing Program (No. 18YF1401900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbin Zhang or Yi Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Zhang, H., Zhang, Y. et al. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties. Front. Chem. Sci. Eng. 14, 143–158 (2020). https://doi.org/10.1007/s11705-019-1852-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1852-x

Keywords

Navigation