Skip to main content

Advertisement

Log in

Seed-assisted, organic structure-directing agent-free synthesis of KFI-type zeolite with enhanced micropore volume and CO2 adsorption capacity

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

ZK-5 (a KFI-type framework topology) is a “small-pore” zeolite with a three-dimensional channel system with eight-membered ring micropore openings (ca. 0.39 nm). Several recent studies have shown that ZK-5 has the potential to be applied in solid adsorbents or catalysts, particularly in CO2 capture and NOx reduction in industry. However, the quality (e.g. micropore volume) of conventional ZK-5 (0.21–0.22 cm3 g−1) remains smaller than the theoretical micropore volume of the KFI-type framework topology (0.32–0.34 cm3 g−1). Improving the micropore volume of ZK-5 could therefore enhance its performance. In this study, we apply the seed-assisted method to obtain KFI-type zeolite starting by adding conventionally synthesized ZK-5 as a seed into organic structure-directing agent (OSDA)-free K,Sr-aluminosilicate reactants, followed by hydrothermal treatment. The series of experimental characterizations of the obtained products showed that under certain synthesis conditions, the addition of a seed could enhance the micropore volume of KFI-type zeolites to 0.26–0.28 cm3 g−1, which is larger than previously reported for ZK-5. Such enhanced properties led to higher CO2 adsorption capacities for the obtained KFI-type zeolites compared with conventional ZK-5 over a wide range of pressures. A series of experiments and comparison with previous literature, indicated that the crystallization behavior of the KFI-type zeolites did not follow typical seed-mediated growth. Instead, seed-dissolution–recrystallization behavior is thought to have occurred in the seeded-gel system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baerlocher, C., McCusker, L.B., Olson, D.H.: Atlas of Zeolite Framework Types, 6th edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Ban, S., Vlugt, T.J.H.: Zeolite microporosity studied by molecular simulation. Mol. Simul. 35, 1105–1115 (2009)

    Article  CAS  Google Scholar 

  • Barrer, R.M.: Zeolites and their synthesis. Zeolites 1, 130–140 (1981)

    Article  CAS  Google Scholar 

  • Chatelain, T., Patarin, J., Farré, R., Pétigny, O., Schulz, P.: Synthesis and characterization of 18-crown-6 ether-containing KFI-type zeolite. Zeolites 17, 328–333 (1996)

    Article  CAS  Google Scholar 

  • Coudert, F.-X., Kohen, D.: Molecular insight into CO2 “trapdoor” adsorption in zeolite Na-RHO. Chem. Mater. 29, 2724–2730 (2017)

    Article  CAS  Google Scholar 

  • Cundy, C.S., Cox, P.A.: The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 82, 1–78 (2005)

    Article  CAS  Google Scholar 

  • Davis, M.E.: Zeolites from a materials chemistry perspective. Chem. Mater. 26, 239–245 (2014)

    Article  CAS  Google Scholar 

  • Davis, M.E., Lobo, R.F.: Zeolite and molecular sieve synthesis. Chem. Mater. 4, 756–768 (1992)

    Article  CAS  Google Scholar 

  • Dusselier, M., Davis, M.E.: Small-pore zeolites: synthesis and catalysis. Chem. Rev. 118, 5265–5329 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Harkins, W.D., Jura, G.: An adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the area occupied by nitrogen molecules on the surfaces of solids. J. Chem. Phys. 11, 431–432 (1943)

    Article  CAS  Google Scholar 

  • Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., Okubo, T.: A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent. J. Am. Chem. Soc. 134, 11542–11549 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Iyoki, K., Itabashi, K., Okubo, T.: Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous Mesoporous Mater. 189, 22–30 (2014)

    Article  CAS  Google Scholar 

  • Ji, Y., Birmingham, J., Deimund, M.A., Brand, S.K., Davis, M.E.: Steam-dealuminated, OSDA-free RHO and KFI-type zeolites as catalysts for the methanol-to-olefins reaction. Microporous Mesoporous Mater. 232, 126–137 (2016)

    Article  CAS  Google Scholar 

  • Kamimura, Y., Chaikittisilp, W., Itabashi, K., Shimojima, A., Okubo, T.: Critical factors in the seed-assisted synthesis of zeolite beta and “Green Beta” from OSDA-free Na+–aluminosilicate gels. Chem. Asian J. 5, 2182–2191 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Kamimura, Y., Tanahashi, S., Itabashi, K., Sugawara, A., Wakihara, T., Shimojima, A., Okubo, T.: Crystallization behavior of zeolite beta in OSDA-free seed-assisted synthesis. J. Phys. Chem. C. 115, 744–750 (2011)

    Article  CAS  Google Scholar 

  • Kamimura, Y., Itabashi, K., Okubo, T.: Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “Green MTW” from sodium aluminosilicate gel systems. Microporous Mesoporous Mater. 147, 149–156 (2012)

    Article  CAS  Google Scholar 

  • Kamimura, Y., Shimomura, M., Endo, A.: CO2 adsorption/desorption properties of zeolite beta prepared from OSDA-free synthesis. Microporous Mesoporous Mater. 219, 125–133 (2016)

    Article  CAS  Google Scholar 

  • Kamimura, Y., Itabashi, K., Kon, Y., Endo, A., Okubo, T.: Seed-assisted synthesis of MWW-type zeolite with organic structure-directing agent-free Na-aluminosilicate gel system. Chem. Asian J. 12, 530–542 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Kasahara, S., Itabashi, K., Igawa, K.: Clear aqueous nuclei solution for faujasite synthesis. Stud. Surf. Sci. Catal. 28, 185–192 (1986)

    Article  CAS  Google Scholar 

  • Kerr, G.T.: Zeolite ZK-5: a new molecular sieve. Science 140, 1412 (1966)

    Article  Google Scholar 

  • Kim, J., Cho, S.J., Kim, D.H.: Facile synthesis of KFI-type zeolite and its application to selective catalytic reduction of NOx with NH3. ACS Catal. 7, 6070–6081 (2017)

    Article  CAS  Google Scholar 

  • Kubota, Y., Itabashi, K., Inagaki, S., Nishita, Y., Komatsu, R., Tsuboi, Y., Shinoda, S., Okubo, T.: Effective fabrication of catalysts from large-pore, multidimensional zeolites synthesized without using organic structure-directing agents. Chem. Mater. 26, 1250–1259 (2014)

    Article  CAS  Google Scholar 

  • Kurniawan, T., Muraza, O., Hakeem, A.S., Al-Amer, A.M.: Mechanochemical route and recrystallization strategy to fabricate mordenite nanoparticles from natural zeolites. Cryst. Growth Des. 17, 3313–3320 (2017)

    Article  CAS  Google Scholar 

  • Lippens, B.C., Deboer, J.H.: Studies on pore systems in catalysts V. J. Catal. 4, 319–323 (1965)

    Article  CAS  Google Scholar 

  • Liu, Q., Pham, T., Porosoff, M.D., Lobo, R.F.: ZK-5: A CO2-selective zeolite with high working capacity at ambient temperature and pressure. Chemsuschem 5, 2237 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Lozinska, M.M., Mangano, E., Mowat, J.P.S., Shepherd, A.M., Howe, R.F., Thompson, S.P., Parker, J.E., Brandani, S., Wright, P.A.: Understanding carbon dioxide adsorption on univalent cation forms of the flexible zeolite rho at conditions relevant to carbon capture from flue gases. J. Am. Chem. Soc. 134, 17628–17642 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Lozinska, M.M., Mowat, J.P.S., Wright, P.A., Thompson, S.P., Jorda, J.L., Palomino, M., Valencia, S., Rey, F.: Cation gating and relocation during the highly selective “trapdoor” adsorption of CO2 on univalent cation forms of zeolite rho. Chem. Mater. 26, 2052–2061 (2014)

    Article  CAS  Google Scholar 

  • Meng, X., Xiao, F.-S.: Green routes for synthesis of zeolites. Chem. Rev. 114, 1521–1543 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Palomino, M., Corma, A., Jorda, J.L., Rey, F., Valencia, S.: Zeolite rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chem. Commun. 48, 215–217 (2012)

    Article  CAS  Google Scholar 

  • Pham, T.D., Liu, Q., Lobo, R.F.: Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites. Langmuir 29, 832–839 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Remy, T., Peter, S.A., Tendeloo, L.V., Perre, S.V., Lorgouilloux, Y., Kirschhock, C.E.A., Baron, G.V., Denayer, J.F.M.: Adsorption and separation of CO2 on KFI zeolites: effect of cation type and si/al ratio on equilibrium and kinetic properties. Langmuir 29, 4998–5012 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders & Porous Solids. Academic Press, Cambridge (1999)

    Google Scholar 

  • Schwarz, S., Corbin, D.R., Sonnichsen, G.C.: The effect of crystal size on the methylamines synthesis performance of ZK-5 zeolites. Microporous Mesoporous Mater. 22, 409–418 (1998)

    Article  CAS  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewka, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  • Wakihara, T., Ihara, A., Inagaki, S., Tatami, J., Sato, K., Komeya, K., Meguro, T., Kubota, Y., Nakahira, A.: Top-down tuning of nanosized ZSM-5 zeolite catalyst by bead milling and recrystallization. Cryst. Growth Des. 11, 5153–5158 (2011)

    Article  CAS  Google Scholar 

  • Xie, B., Zhang, H., Yang, C., Liu, S., Ren, L., Zhang, L., Meng, X., Yilmaz, B., Müller, U., Xiao, F.-S.: Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chem. Commun. 47, 3945–3947 (2011)

    Article  CAS  Google Scholar 

  • Yang, J., Shang, H., Krishna, R., Wang, Y., Ouyang, K., Li, J.: Adjusting the proportions of extra-framework K+ and Cs+ cations to construct a “molecular gate” on ZK-5 for CO2 removal. Microporous Mesoporous Mater. 268, 50–57 (2018)

    Article  CAS  Google Scholar 

  • Zhang, H.Y., Yang, C.G., Zhu, L.F., Meng, X.J., Yilmaz, B., Müller, U., Feyen, M., Xiao, F.-S.: Rational synthesis of Beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route. Microporous Mesoporous Mater. 155, 1–7 (2012)

    Article  CAS  Google Scholar 

  • Zhang, K., Fernandez, S., Ostraat, M.L.: Understanding commonalities and interplay between organotemplate-free zeolite synthesis, hierarchical structure creation, and interzeolite transformation. ChemCatChem. 10, 4197–4212 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by a “Grant for Advanced Industrial Technology Development” in 2016–2017 from the New Energy and Industrial Technology Development Organization (NEDO), Japan. We gratefully thank Dr. Kunio Suzuki and Ms. Rie Sato (AIST) for their assistance with the FE-SEM and XRD measurements. We thank Sarah Dodds, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Contributions

YK performed the main experiments; all authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Yoshihiro Kamimura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamimura, Y., Endo, A. Seed-assisted, organic structure-directing agent-free synthesis of KFI-type zeolite with enhanced micropore volume and CO2 adsorption capacity. Adsorption 25, 1099–1113 (2019). https://doi.org/10.1007/s10450-019-00113-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00113-6

Keywords

Navigation