Skip to main content
Log in

Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have fabricated highly ordered, vertically aligned, high aspect ratio silicon nanopillars (SiNPLs) of diameter ~80 nm by combining metal-assisted chemical etching and nanosphere lithography. The evolution of surface morphology of porous silicon nanopillars has been explained, and the presence of mesoporous structures was detected on the top of silicon nanopillars using field emission scanning electron microscopy. The mesoporosity of the SiNPLs is confirmed by Brunauer–Emmett–Teller measurements. The peak shift and the splitting of optical phonon modes into LO and TO modes in the micro-Raman spectra of mesoporous SiNPLs manifest the presence of 2–3 nm porous Si nanocrystallites (P-SiNCs) on the top of SiNPLs and the size of crystallites was calculated using bond polarizability model for spherical phonon confinement. The origin of red luminescence is explained using quantum confinement (QC) and QC luminescent center models for the P-SiNCs, which is correlated with the micro-Raman spectra. Finally, we confirmed the origin of the red luminescence is from the P-SiNCs formed on surface of SiNPLs, highly desired for LED devices by suitably tailoring the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163–168 (2008)

    Article  ADS  Google Scholar 

  2. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Small 2, 85–88 (2006)

    Article  Google Scholar 

  3. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885–890 (2007)

    Article  ADS  Google Scholar 

  4. S.M. Lee, R. Biswas, W. Li, D.O. Kang, L. Chan, J. Yoon, ACS Nano 8, 10507–10512 (2014)

    Article  Google Scholar 

  5. K.Q. Peng, S.T. Lee, Adv. Mater. 23, 198–215 (2011)

    Article  Google Scholar 

  6. C.K. Chan, H. Peng, G.A.O. Liu, K. Mcilwrath, X.F. Zhang, R.A. Huggins, Y.I. Cui, Nat. Nanotechnol. 411, 31–35 (2007)

    Google Scholar 

  7. S.F. Leung, Q. Zhang, F. Xiu, D. Yu, J.C. Ho, D. Li, F.J. Zhiyong, Phys. Chem. Lett. 5, 1479–1495 (2014)

    Article  Google Scholar 

  8. H. Yu, X. Duan, C.M. Lieber, Small 1, 142–147 (2005)

    Article  Google Scholar 

  9. S.W. Chang, J. Oh, S.T. Boles, C.V. Thompson, Appl. Phys. Lett. 96, 153108 (2010)

    Article  ADS  Google Scholar 

  10. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289–1292 (2001)

    Article  ADS  Google Scholar 

  11. W. Xu, C.S. Ozkan, Nano Lett. 8, 398–404 (2008)

    Article  ADS  Google Scholar 

  12. Z.P. Huang, N. Geyer, P. Werner, J.D. Boor, U. Gosele, Adv. Mater. 23, 285–308 (2011)

    Article  Google Scholar 

  13. B. Kiraly, S. Yang, T. Huang, J. Nanotechnol. 24, 245704–245705 (2013)

    Article  ADS  Google Scholar 

  14. X. Zhao, C.M. Wei, L. Yang, M.Y. Chou, Phys. Rev. Lett. 92, 236805 (2004)

    Article  ADS  Google Scholar 

  15. R. Ghosh, P.K. Giri, K. Imakita, M. Fujii, Nanotechnology 25, 045703–045705 (2014)

    Article  ADS  Google Scholar 

  16. L.A. Osminkina, K.A. Gonchar, V.S. Marshov, K.V. Bunkov, D.V. Petrov, L.A. Golovan, F. Talkenberg, V.A. Sivakov, V.U. Timoshenko, Nanoscale Res. Lett. 7, 524–528 (2012)

    Article  ADS  Google Scholar 

  17. V. Gowrishankar, S.R. Scully, A.T. Chan, M.D. McGehee, Q. Wang, H.M.J. Branz, Appl. Phys. 103, 064511 (2008)

    Article  Google Scholar 

  18. J. Goldberger, A.I. Hochbaum, R. Fan, P. Yang, Nano Lett. 6, 973–977 (2006)

    Article  ADS  Google Scholar 

  19. H. Schmid, M.T. Bjork, J. Knoch, H. Riel, W. Riess, P. Rice, T. Topuria, J. Appl. Phys. 103, 024304–024306 (2008)

    Article  ADS  Google Scholar 

  20. D. Shakthivel, S.J. Raghavan, Appl. Phys. 112, 024317–024322 (2012)

    Article  Google Scholar 

  21. Y. Wang, V. Schmidt, S. Senz, U. Gosele, Nat. Nanotechnol. 1, 186–189 (2006)

    Article  ADS  Google Scholar 

  22. S. Hofmann, R. Sharma, C.T. Wirth, S.F. Cervantes, C. Ducati, T. Kasama, R.E. Dunin-Borkowski, J. Drucker, P. Bennett, J. Robertson, Nat. Mater. 7, 372–375 (2008)

    Article  ADS  Google Scholar 

  23. K. Omar, Y. Al-Douri, A. Ramizy, Z. Hassan, Superlattices Microst. 50, 119–127 (2011)

    Article  ADS  Google Scholar 

  24. Z. Huang, H. Fang, J. Zhu, Adv. Mater. 19, 744–748 (2007)

    Article  Google Scholar 

  25. C.L. Cheung, R.J. Nikolic, C.E. Reinhardt, T.F. Wang, Nanotechnology 17, 1339–1343 (2006)

    Article  ADS  Google Scholar 

  26. A.V. Whitney, B.D. Myers, R.P. Van Duyne, Nano Lett. 4, 1507–1511 (2004)

    Article  ADS  Google Scholar 

  27. R. Liu, F. Zhang, C. Con, B. Cui, B. Sun, Nanoscale Res. Lett. 8, 155–163 (2013)

    Article  ADS  Google Scholar 

  28. K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Adv. Mater. 14, 1164–1168 (2002)

    Article  Google Scholar 

  29. K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Adv. Funct. Mater. 13, 127–132 (2003)

    Article  Google Scholar 

  30. K.Q. Peng, Z.P. Huang, J. Zhu, Adv. Mater. 16, 73–76 (2004)

    Article  Google Scholar 

  31. K.Q. Peng, Y. Wu, H. Fang, X.Y. Zhong, Y. Xu, J. Zhu, Angew. Chem. Int. Ed. 44, 2797–2802 (2005)

    Article  Google Scholar 

  32. K.Q. Peng, H. Fang, J.J. Hu, Y. Wu, J. Zhu, Y.J. Yan, S. Lee, Chem. Eur. J. 12, 7942–7947 (2006)

    Article  Google Scholar 

  33. K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Adv. Funct. Mater. 16, 387–394 (2006)

    Article  Google Scholar 

  34. W.K. Choi, T.H. Liew, M.K. Dawood, H.I. Smith, C.V. Thompson, M.H. Hong, Nano Lett. 8, 3799–3802 (2008)

    Article  ADS  Google Scholar 

  35. F. Demami, L. Pichon, R. Roger, A.C. Salaun, Mater. Sci. Eng. 6, 012014–012019 (2009)

    Google Scholar 

  36. Z.P. Huang, Y. Wu, H. Fang, J. Zhu, Nanotechnology 17, 3768–3774 (2006)

    Article  ADS  Google Scholar 

  37. X. Li, Curr. Opin. Solid State Mater. Sci. 16, 71–81 (2012)

    Article  ADS  Google Scholar 

  38. W. Chem, K. Hsu, I. Chun, B.P. de Azeredo, N. Ahmed, K.H. Kim, Nano Lett. 10, 1582–1588 (2010)

    Article  ADS  Google Scholar 

  39. Z.P. Huang, X.X. Zhang, M. Reiche, L.F. Liu, W. Lee, T. Shimizu, S. Senz, U. Gosele, Nano Lett. 8, 3046–3051 (2008)

    Article  ADS  Google Scholar 

  40. S.W. Chang, V.P. Chuang, S.T. Boles, C.A. Ross, C.V. Thompson, Adv. Funct. Mater. 19, 2495–2500 (2009)

    Article  Google Scholar 

  41. C. Chartier, S. Bastide, C. Levy-Clement, Electrochim. Acta 53, 5509–5516 (2008)

    Article  Google Scholar 

  42. A.A.S.M. Radzi, S.F.M. Yusop, M. Rusop, Abdullah. Mat. Sci. Eng. R 40, 012046–012052 (2012)

    Google Scholar 

  43. G.R. Lina, C.J. Lin, H.C. Kuo, Appl. Phys. Lett. 91, 093122–093123 (2007)

    Article  ADS  Google Scholar 

  44. R. Tsu, H. Shen, M. Dutta, Appl. Phys. Lett. 60, 112–114 (1992)

    Article  ADS  Google Scholar 

  45. J. Zi, K. Zhang, X. Xie, Phys. Rev. B 55, 15–21 (1997)

    Article  Google Scholar 

  46. J. Heitmann, F. Muller, L. Yi, M. Zacharias, Phys. Rev. B 69, 195309 (2004)

    Article  ADS  Google Scholar 

  47. G.G. Qin, Y.J. Li, Phys. Rev. B 68, 085309 (2003)

    Article  ADS  Google Scholar 

  48. R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picczzi, S. Santucci, Appl. Surf. Sci. 70, 222–227 (1993)

    Article  ADS  Google Scholar 

  49. P. Kumar, ISRN Nanotechnol. 2011, 163168 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-NAL, for his support and encouragement. Mr. G. Srinivas and Mr. Praveen Kumar are thanked for various measurements. Mr. Mariappan is thanked for BET measurements. Mr. Benjamin (Pondicherry University) is thanked for PL measurements. BRNS (Project No.: U-1-125) is thanked for SRF fellowship to K. P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish C. Barshilia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karadan, P., John, S., Anappara, A.A. et al. Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence. Appl. Phys. A 122, 669 (2016). https://doi.org/10.1007/s00339-016-0203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0203-8

Keywords

Navigation