Skip to main content
Log in

Stability of Ni/SiO2-ZrO2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Ni/SiO2-ZrO2 catalysts with Ni loadings of 1 to 13 wt-% were prepared, characterized by elemental analysis, X-ray diffraction, N2 sorption, temperature programmed oxidation, temperature programmed reduction, and tested for their activity and stability in the dry reforming of methane with carbon dioxide at 850 °C, gas hourly space velocity of 6000 and 1800 h–1 and atmospheric pressure. The SiO2-ZrO2 support as obtained through a simple and efficient sol-gel synthesis is highly porous (A BET = 90 m2∙g–1, d P = 4.4 nm) with a homogeneously distributed Si-content of 3 wt-%. No loss of Si or formation of monoclinic ZrO2, even after steaming at 850 °C for 160 h, was detectable. The catalyst with 5 wt-% Ni loading in its fully reduced state is stable over 15 h on-stream in the dry reforming reaction. If the catalyst was not fully reduced, a reduction during the early stages of dry reforming is accompanied by the deposition of up to 44 mg∙g–1carbon as shown by experiments in a magnetic suspension balance. Rapid coking occurs for increased residence times and times-on-stream starting at 50 h. The Ni loading of 5 wt-% on SiO2-ZrO2 was shown to provide an optimal balance between activity and coking tendency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Havran V, Dudukovic M P, Lo C S. Conversion of methane and carbon dioxide to higher value products. Industrial & Engineering Chemistry Research, 2011, 50(12): 7089–7100

    Article  CAS  Google Scholar 

  2. York A P E, Xiao T, Green M L H, Claridge J B. Methane oxyforming for synthes is gas production. Catalysis Reviews, 2007, 49(4): 511–560

    Article  CAS  Google Scholar 

  3. Wender I. Reactions of synthesis gas. Fuel Processing Technology, 1996, 48(3): 189–297

    Article  CAS  Google Scholar 

  4. Wang S, Lu G Q, Millar G J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy & Fuels, 1996, 10(4): 896–904

    Article  CAS  Google Scholar 

  5. Rostrup-Nielsen J R, Sehested J, Norskov J K. Hydrogen and syntheis gas by steam and CO2 reforming. Advances in Catalysis, 2002, 47: 65–139

    CAS  Google Scholar 

  6. Kroll V C H, Swann HM, Mirodatos C. Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst. Journal of Catalysis, 1996, 161(1): 409–422

    Article  CAS  Google Scholar 

  7. Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews, 2014, 43(22): 7813–7837

    Article  CAS  Google Scholar 

  8. Itkulova S S, Zhunusova K Z, Zakumbaeva G D. CO2 reforming of methane over Co-Pd/Al2O3 catalysts. Bulletin of the Korean Chemical Society, 2005, 26(12): 2017–2020

    Article  CAS  Google Scholar 

  9. Bitter J H, Seshan K, Lercher J A. Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. Journal of Catalysis, 1998, 176(1): 93–101

    Article  CAS  Google Scholar 

  10. Swaan HM, Kroll V C H, Martin G A, Mirodatos C. Deactivation of supported nickel catalysts during the redorming of methane by carbon dioxide. Catalysis Today, 1994, 2(2-3): 571–578

    Article  Google Scholar 

  11. Liu C J, Ye J, Jiang J, Pan Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem, 2011, 3(3): 529–541

    Article  CAS  Google Scholar 

  12. Budiman A W, Song S H, Chang T S, Shin C H, Choi M J. Dry reforming of methane over cobalt catalysts: A literature review of catalyst developent. Catalysis Surveys from Asia, 2012, 16(4): 183–197

    Article  CAS  Google Scholar 

  13. Benrabaa R, Löfberg A, Rubbens A, Bordes-Richard E, Vannier R N, Barama A. Structure, reactivity and catalytic properties of nanoparticles of nickel ferrite in the dry reforming of methane. Catalysis Today, 2013, 203: 188–195

    Article  CAS  Google Scholar 

  14. Rostrup-Niesen J P. Catalytic Steam Reforming in Catalysis. In: Anderson J R, Boudart M, eds. Catalysis-Science & Technology. Berlin: Springer, 1984, 1–117

    Google Scholar 

  15. Sajjadi S M, Haghighi M, Eslami A A, Rahmani F. Hydrogen production via CO2-reforming of methane over Cu and Co doped Ni/Al2O3 nanocatalyst: Impregnation versus sol-gel method and effect of process conditions and promoter. Journal of Sol-Gel Science and Technology, 2013, 67(3): 601–617

    Article  CAS  Google Scholar 

  16. Al-Fatesh A S, Naeem M A, Fakeeha A H, Abasaeed A E. CO2 reforming of methane to produce syngas over g-Al2O3-supported NiSr catalysts. Bulletin of the Chemical Society of Japan, 2013, 86(6): 742–748

    Article  CAS  Google Scholar 

  17. Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S. CO2 dryreforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on CeH activation and carbon suppression. International Journal of Hydrogen Energy, 2012, 37(15): 11195–11207

    Article  CAS  Google Scholar 

  18. Han J W, Kim C, Park J S, Lee H. Highly coke-resistant Ni nanoparticle catalysts with minimal sintering in dry reforming of methane. ChemSusShem, 2014, 7: 7451–7456

    Google Scholar 

  19. Kang K M, Kim H W, Shim I W, Kwak H Y. Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane. Fuel Processing Technology, 2011, 92(6): 1236–1243

    Article  CAS  Google Scholar 

  20. Gardner T H, Spivey J J, Kugler E L, Pakhare D. CH4-CO2 reforming over Ni-substituted barium hexaaluminate catalysts. Applied Catalysis A, 2013, 455: 129–136

    Article  CAS  Google Scholar 

  21. Roussiere T, Schelkle K M, Titlbach S, Wasserschaff G, Milanov A, Cox G, Schwab E, Deutschmann O, Schulz L, Jentys A, Lercher J A, Schunk S A. Structure-activity relationships of nickel-hexaaluminatesin reforming reactions. Part I: Controlling Nickel nanoparticle growth and phase formation. ChemCatChem, 2014, 6: 1438–1446

    CAS  Google Scholar 

  22. Roussiere T, Schelkle K M, Titlbach S, Wasserschaff G, Milanov A, Cox G, Schwab E, Deutschmann O, Schulz L, Jentys A, Lercher J A, Schunk S A. Structure-activity relationships of nickel-hexaaluminates in reforming reactions. Part II: Activity and stability of nanostructured nickel-hexaaluminate-based catalysts in the dry reforming of methane. ChemCatChem, 2014, 6: 1447–1452

    CAS  Google Scholar 

  23. Bhavani G A, Kim W Y, Lee J S. Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catalysis, 2013, 3(7): 1537–1544

    Article  CAS  Google Scholar 

  24. Titus J, Roussière T, Wasserschaff G, Schunk S A, Milanov A, Schwab E, Wagner G, Oeckler O, Gläser R. Dry reforming of methane wth carbon dioxide over NiO-MgO-ZrO2. Catalysis Today, 2015, doi: 10.1016/j.cattod.2015.09.027

    Google Scholar 

  25. Frontera P, Macario A, Aloise A, Antonucci P L, Giordano G, Nagy J B. Effect of support surface on methane dry-reforming catalyst preparation. Catalysis Today, 2013, 218: 18–29

    Article  Google Scholar 

  26. Rezaei M, Alavi S M, Sahebdelfar S, Liu X M, Qian L, Yan Z F. CO2-CH4 reforming over Nickel catalysts supported on mesoporous nanocrystalline zirconia with high surface area. Energy & Fuels, 2007, 21(2): 581–589

    Article  CAS  Google Scholar 

  27. Liang B, Ding C. Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying. Surface and Coatings Technology, 2005, 197(2-3): 185–192

    Article  CAS  Google Scholar 

  28. Shen R, Shafrir S N, Miao C, Wang M, Lambropoulos J C, Jacobs J D, Yang H. Synthesis and corrosion study of zirconia-coated carboyl iron particles. Journal of Colloid and Interface Science, 2010, 342(1): 49–56

    Article  CAS  Google Scholar 

  29. Peters A, Nouzoori F, Richter D, Lutecki M, Gläser R. Nickelloaded zirconia catalysts with large specific surface area for hightemperature catalytic applications. ChemCatChem, 2011, 3(3): 598–606

    Article  CAS  Google Scholar 

  30. Rezaei M, Alavi S M, Sahebdelfar S, Bai R, Liu X M, Yan Z F. CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts. Applied Catalysis B: Environmental, 2008, 77(3-4): 346–354

    Article  CAS  Google Scholar 

  31. Cassiers K, Linssen T, Aerts K, Cool P, Lebedev O, Van Tendeloo G, Van Grieken R, Vansant E F. Controlled formation of aminetemplated mesostructured zirconia with remarkably high thermal stability. Journal of Materials Chemistry, 2003, 13(12): 3033–3039

    Article  CAS  Google Scholar 

  32. Ciesla U, Schacht S, Stucky D G, Unger K K, Schüth F. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angewandte Chemie International Edition, 1996, 35(5): 541–543

    Article  CAS  Google Scholar 

  33. Lutecki M, Solcova O, Werner S, Breitkopf C. Synthesis and characterization of nanostructured sulfated zirconias. Journal of Sol- Gel Science and Technology, 2010, 53(1): 13–20

    Article  CAS  Google Scholar 

  34. Centi G, Cerrato G, D’Angelo S, Finardi U, Giamello E, Morterra C, Perathoner S. Catalytic behavior and nature of active sites in copperon-zirconia catalysts for the decomposition of N2O. Catalysis Today, 1996, 27(1-2): 265–270

    Article  CAS  Google Scholar 

  35. del Monte F, Larsen W, Mackenzie J D. Stabilization of tetragonal ZrO2 in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society, 2000, 83(3): 628–634

    Article  Google Scholar 

  36. del Monte F, Larsen W, Mackenzie J D. Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society, 2000, 83(6): 1506–1512

    Article  Google Scholar 

  37. Ho S M. On the structural chemistry of zirconium oxide. Matererials. Science and Engeniering, 1982, 54: 23–29

    Article  CAS  Google Scholar 

  38. Chuah G K, Jaenicke S. The preparation of high surface area zirconia—influence of precipitating agent and digestion. Applied Catalysis A, 1997, 163(1-2): 261–273

    Article  CAS  Google Scholar 

  39. Chuah G K, Jaenicke S, Cheong S A, Chan K S. The influence of preparation conditions on the surface area of zirconia. Applied Catalysis A, 1996, 145(1-2): 267–248

    Article  CAS  Google Scholar 

  40. Chuah G K, Jaenicke S, Pong B K. The preparation of high-surfacearea zirconia: II. Influence of precipitating agent and digestion on the morphology and microstructure of hydrous zirconia. Journal of Catalysis, 1998, 175(1): 80–92

    Article  CAS  Google Scholar 

  41. Chuah G K, Liu H S, Jaenicke J, Li J. High surface area zirconia by digestion of zirconium propoxide at different pH. Microporous and Mesoporous Materials, 2000, 39(12): 381–392

    Article  CAS  Google Scholar 

  42. Viinikainen T, Rönkkönen H, Bradshaw H, Stephenson H, Airaksinen S, Reinikainen M, Simell P, Krause O. Acidic and basic surface sites of zirconia-based biomass gasification gas cleanup catalysts. Applied Catalysis A, 2009, 362(1-2): 169–177

    Article  CAS  Google Scholar 

  43. Liu D, Wang Y, Shi D, Jia X, Wang X, Borgna A, Lau R, Yang Y. Methane reforming with carbon dioxide over a Ni/ZiO2SiO2 catalyst: Influence of pretreatment gas atmospheres. International Journal of Hydrogen Energy, 2012, 37(13): 10135–10144

    Article  CAS  Google Scholar 

  44. Putz H, Brandenburg K. Match!: Phase Identification from Powder Diffraction, Bonn, Crystal Impact 2003–2012. http://crystalimpact. com/match/Default.htm

  45. Rodriguez J A, Hanson J C, Frenkel A I, Kim J Y, Perez M. Experimental and theoretical studies on the reaction of H2 with NiO: Role of O vacancies and mechanism for oxide reduction. Journal of the American Chemical Society, 2002, 124(2): 346–354

    Article  CAS  Google Scholar 

  46. Kahle L C S, Roussière T, Maier L, Herrera Delgado K, Wasserschaff G, Schunk S A, Deutschmann O. Methane dryreforming at high temperature and elevated pressure: Impact of gasphase reactions. Industiral & Engeniering Chemistry Research, 2013, 52(34): 11920–11930

    Article  CAS  Google Scholar 

  47. Guo J, Lou H, Zheng XM. The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon, 2007, 45(6): 1314–1321

    Article  CAS  Google Scholar 

  48. Bychkov V Y, Tyulenin Y P, Firsova A A, Shafranovsky A E, Gorenberg A Y, Korchak V N. Carbonization of nickel catalysts and its effect on methane dry reforming. Applied Catalysis A, 2013, 453: 71–79

    Article  CAS  Google Scholar 

  49. Pan W, Song C. Using tapered element oscillating microbalance for in situ monitoring of carbon deposition on nickel catalyst during CO2 reforming of methane. Catalysis Today, 2009, 148(3-4): 232–242

    Article  CAS  Google Scholar 

  50. Pompeo F, Nichio N N, Souza M M, Cesar D V, Ferretti O A, Schmal M. Study of Ni and Pt catalysts supported on a-Al2O3 and ZrO2 applied in methane reforming with CO2. Applied Catalysis A, 2007, 316(2): 175–138

    Article  CAS  Google Scholar 

  51. Stagg-Williams S M, Noronha F B, Fendley G, Resasco D E. CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. Journal of Catalysis, 2000, 194(2): 240–249

    Article  CAS  Google Scholar 

  52. Montoya J A, Romero-Pascual E, Gimon C, Del Angel P, Monzón A. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel. Catalysis Today, 2000, 63(1): 71–85

    Article  CAS  Google Scholar 

  53. Gonzalez-Delacruz V M, Pereniguez R, Ternero F, Holgado J P, Caballero A. Modifying the size of nickel metallic particles by H2/CO treatment in Ni/ZrO2 methane dry reforming catalysts. ACS Catalysis, 2011, 1(2): 82–88

    Article  CAS  Google Scholar 

  54. Pohling R. Chemische Reaktionen in der Wasseranalyse. Berlin: Springer-Verlag, 2015

    Book  Google Scholar 

  55. San-José-Alonso D, Juan-Juan J, Illán-Gómez M J, Román-Martínez M C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Applied Catalysis A, 2009, 371(1-2): 54–59

    Article  Google Scholar 

  56. Zhou L, Li L, Wei N, Li J, Basset J M. Effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane. Chem-CatChem, 2015, 7(16): 2508–2516

    CAS  Google Scholar 

  57. Fan M S, Abdullah A Z, Bhatia S. Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgOZrO2: Preparation, characterization and activity studies. Applied Catalysis B: Environmental, 2010, 100(1-2): 365–377

    Article  CAS  Google Scholar 

  58. Cai W, Ye L, Zhang L, Ren Y, Yue B, Chen X, He H. Highly dispersed Nickel-containing mesoporous silica with superior stability in carbon dioxide reforming of methane: The effect of anchoring. Materials (Basel), 2014, 7(3): 2340–2355

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Gläser.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolze, B., Titus, J., Schunk, S.A. et al. Stability of Ni/SiO2-ZrO2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide. Front. Chem. Sci. Eng. 10, 281–293 (2016). https://doi.org/10.1007/s11705-016-1568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1568-0

Keywords

Navigation