Skip to main content
Log in

An improved route to urapidil from 1-(2-methoxyphenyl)piperazine and oxetane

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Urapidil is an important drug for the treatment of essential hypertension and intravenously in hypertensive emergencies. Herein, an improved route to Urapidil was introduced. The new designed synthetic route starts with the addition reaction of 1-(2-methoxyphenyl)piperazine and oxetane catalyzed by Yb(OTf)3 in acetonitrile to form the key intermediate 3-(4-(2-methoxyphenyl)piperazin-1-yl)propan-1-ol. Additionally, 3-(4-(2-methoxyphenyl)piperazin-1-yl)propan-1-ol was purified by recrystallization from the optimized solvents, which was beneficial to large scale production. Intermediate 3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl-4-methylbenzenesulfonate was cast directly for the subsequent reaction without further purification. The overall yield of this route is about 45%. The structure of the final product was well confirmed by 1H-NMR, 13C-NMR and HRMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  • Ahmad S, Yousaf M, Mansha A, Rasool N, Zahoor AF, Hafeez F et al (2016) Ring-opening reactions of oxetanes: a review of methodology development and synthetic applications. Synth Commun 46(17):1397–1416. https://doi.org/10.1080/00397911.2016.1208245

    Article  CAS  Google Scholar 

  • Bagal SK, Bodnarchuk MS, King TA, McKerrecher D, Luo X, Wang P et al (2020) Intramolecular ring-opening of oxetanes: access to functionalised hydroxymethyl 2,3-dihydroimidazo[1,2-c] quinazolines. Synlett 31(5):502–506. https://doi.org/10.1055/s-0039-1691578

    Article  CAS  Google Scholar 

  • Bull JA, Croft RA, Davis OA, Doran R, Morgan KF (2016) Oxetanes: recent advances in synthesis, reactivity, and medicinal chemistry. Chem Rev 116(19):12150–12233. https://doi.org/10.1021/acs.chemrev.6b00274

    Article  CAS  PubMed  Google Scholar 

  • Castor G, Schmidt U (1994) Urapidil permeates the intact blood-brain barrier. Intensive Care Med 20(4):278–281. https://doi.org/10.1007/bf01708965

    Article  CAS  PubMed  Google Scholar 

  • Chini M, Crotti P, Favero L, Macchia F (1994) Mild LiBF4-promoted aminolysis of oxetanes. Tetrahedron Lett 35(5):761–764. https://doi.org/10.1016/s0040-4039(00)75811-4

    Article  CAS  Google Scholar 

  • Cichy B, Gabarski K, Wojciechowski J (1990) Sposób otrzymywania 1,3-dimetylo-4-(γ-hydroksypropyloamino)-uracylu. Urząd Patentowy Rzeczypospolitej Polskiej PL162859B1 (issued Aug 10).

  • Crotti P, Favero L, Macchia F, Pineschi M (1994) Aminolysis of oxetanes: quite efficient catalysis by lanthanide(III) trifluoromethansulfonates. Tetrahedron Lett 35(38):7089–7092. https://doi.org/10.1016/0040-4039(94)88233-9

    Article  CAS  Google Scholar 

  • Gharpure M, Rane D, Shukla MC, Patil PV, Patle GT, Lad SM et al. (2012) Process for preparation of urapidil. India Patent Application Publication IN201101217-I3 (issued Nov 30).

  • Hannachi D, Ouddai N, Chermette H (2010) A quantum chemistry investigation on the structure of lanthanide triflates Ln(OTf)3 where Ln = La, Ce, Nd, Eu, Gd, Er Yb and Lu. Dalton Trans 39(15):3673–3680. https://doi.org/10.1039/b923391a

    Article  CAS  PubMed  Google Scholar 

  • Hirschl MM (1995) Guidelines for the drug treatment of hypertensive crises. Drugs 50(6):991–1000. https://doi.org/10.2165/00003495-199550060-00007

    Article  CAS  PubMed  Google Scholar 

  • Klemm K, Prusse W, Kruger U (1997) Synthesis and physico-chemical properties of the antihypertensive agent urapidil (author’s transl). Arzneim-Forsch 27(10):1895–1897

    Google Scholar 

  • Li W, Zhang W, Ma X, Wang P, Du M (2012) New and efficient technique for the synthesis of Urapidil using beta-cyclodextrin as an inverse phase-transfer catalyst. Appl Catal a-Gen 419:210–214. https://doi.org/10.1016/j.apcata.2012.01.030

    Article  CAS  Google Scholar 

  • Liu FL, Zhang LZ, Zhan ZY (2023) A new method for the preparation of urapidil. State Intellectual Property Office of the P.R.C. CN116283798-A (issued Jun 23).

  • Meguro M, Asao N, Yamamoto Y (1994) Ytterbium triflate and high ptrssure-mediated ring-opening of epoxides with amines. J Chem Soc-Perkin Trans 1(18):2597–2601. https://doi.org/10.1039/p19940002597

    Article  Google Scholar 

  • Minushkina LO (2012) Features of urapidil in treatment of resistant hypertension. Kardiologiya 52(8):77–82

    CAS  PubMed  Google Scholar 

  • Mojtahedi MM, Saeed AM, Hamidi V (2007) Efficient solvent-free aminolysis of epoxides and oxetanes under MgBr2·OEt2 catalysis. Catal Commun 8(11):1671–1674. https://doi.org/10.1016/j.catcom.2007.01.030

    Article  CAS  Google Scholar 

  • Morita T, Mita S, Hikita T (1991) Alpha:1-blocker eye drop. Japan Patent Office JP3128332-A (issued May 31).

  • Nigríni M, Bhosale VA, Císařová I, Veselý J (2023) Enantioenriched 1,4-benzoxazepines via chiral brønsted acid-catalyzed enantioselective desymmetrization of 3-substituted oxetanes. J Org Chem 88(24):17024–17036. https://doi.org/10.1021/acs.joc.3c01929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto T, Matsumura Y, Otani T, Shinpo T (1990) Eye lotion to control intra=ocular pressure. Japan Patent Office JP2262518-A (issued Oct 25).

  • Peng F (2016) Synthesis of urapidil medicine intermediate 1, 3-dimethyl-6-(3-hydroxylpropyl group) amino uracil comprises installing adding e.g., 1,3-dimethyl-6-fluorouracil, rising solution temperature, adding cyclohexane, filtering and washing filtrate. State Intellectual Property Office of the P.R.C. CN105503743-A (issued Apr 20).

  • Sirakova V, Penkov N, Kaponov Kh (1986) Treatment of hypertension with urapidil (Ebrantil). Yutreshni Bolesti 25(2):29–32

    CAS  Google Scholar 

  • Suwelack B, Gerhardt U, Hohage H (2000) Therapy of hypertensive crisis. Med Klin 95(5):286–192. https://doi.org/10.1007/pl00002123

    Article  CAS  Google Scholar 

  • Wang W.S, Dai J.B (2014) Cationic hydrophilic chain-extension agent for cationic water-based polyurethane dispersions. State Intellectual Property Office of the P.R.C. CN103992457-A (issued Aug 20).

  • Wu KS, Zhou JC, Li HY, Gu DY, Pan KH, Li WD, Hu YH (2014) Antihypertensive therapy with nicardipine for patients with aortic disease is associated with more esmolol usage than urapidil. J Thorac Dis 6(12):1765. https://doi.org/10.3978/j.issn.2072-1439.2014.12.22

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Sakakura Y, Aso N, Okada S, Tanabe Y (1999) Practical and efficient methods for sulfonylation of alcohols using Ts(Ms)Cl/Et3N and catalytic Me3N center dot HCl as combined base: promising alternative to traditional pyridine. Tetrahedron 55(8):2183–2192. https://doi.org/10.1016/s0040-4020(99)00002-2

    Article  CAS  Google Scholar 

  • Zhang J, Chen W, Lv S, Liu X, Duan S, Li M et al. (2021) Preparation of urapidil hydrochloride involves reacting 3-(4-(2-methoxyphenyl)-1-piperazinyl)propylamine and 6-chloro-1,3-dimethyluracil to obtain urapidil, and preparing urapidil as urapidil hydrochloride. State Intellectual Property Office of the P.R.C. CN109516960-B (issued Jul 02).

Download references

Acknowledgements

We are grateful acknowledge the financial support from the Natural Science Foundation of Hunan Province (No. 2022JJ20055) and The Modern Analysis and Testing Center of Central South University (CSU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Liang Liu.

Ethics declarations

Competing interest

The authors declare no competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 378 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LZ., Liu, FL., Xiang, HY. et al. An improved route to urapidil from 1-(2-methoxyphenyl)piperazine and oxetane. Chem. Pap. (2024). https://doi.org/10.1007/s11696-024-03398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11696-024-03398-2

Keywords

Navigation