Skip to main content
Log in

Enhancing the performance of thienyl imidazole-based non-fused heterocyclic materials by end-capped acceptor modifications for organic and perovskite solar cells

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Fused heterocyclic core-based molecules have high-performing advantages; however, non-fused heterocyclic materials deserve to be studied because of their facile synthetic routes and tunability in optoelectronic properties. In this work, we reported five molecules, namely, D1, D2, D3, D4, and D5 containing imidazolyl–thienyl–imidazolyl-based core, and four peripheral TPA donor units substituted with five acceptors A1, A2, A3, A4, and A5 by thiophene spacer were simulated for theoretical investigation of photovoltaic properties using reference R molecule as a model. For the optimization of geometry and forecasting important electronic parameters, computations with density functional theory-based B3LYP functional and 6-31G (d, p) basis set in both gas and THF were carried out. The calculations include frontier molecular orbital (FMO) energies, band gap energies, density of state (DOS), transition density matrix (TDM), reorganizational energies of hole and electron, molecular electrostatic potential (MEP), open-circuit voltage (Voc), and power conversion efficiencies (PCE). The results show that this molecular engineering of non-fused rings endows these molecules with interesting features, including the shift in absorption, change in frontier orbital energies, and decrease in reorganizational energies and elevating device efficiencies PCE = 7.44% when compared with reference R = 1.35%. The molecular strategy of these new molecules give us the possibility that these simple structured, and easy to chemically modified non-fused rings can be used as building blocks in OSCs and PSCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abram T et al (2014) Electronic and photovoltaic properties of new materials based on 6-mono substituted and 3, 6-disubstituted acridines and their application to design novel materials, for organic solar cells. J Comput Methods Mol 4:19–27

    Google Scholar 

  • Adachi C et al (2001) Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J Appl Phys 90(10):5048–5051

    CAS  Google Scholar 

  • Adnan M et al (2023a) Molecular modelling of fused heterocycle-based asymmetric non-fullerene acceptors for efficient organic solar cells. J Saudi Chem Soc 27(6):101739

    CAS  Google Scholar 

  • Adnan M et al (2023b) Role of aromatic heterocyclic core-based materials as donors for organic and as hole transport materials for perovskites solar cells. J Comput Biophys Chem 22(08):1097–1113

    Google Scholar 

  • Agarwala P, Kabra D (2017) A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J Mater Chem A 5(4):1348–1373

    CAS  Google Scholar 

  • Akram W et al (2023) Engineering push–pull structural versatility in highly functional carbazole-based hole transporting materials design for efficient perovskites solar devices. J Photochem Photobiol, A 444:114991

    CAS  Google Scholar 

  • Ambreen M et al (2023) Elucidating modelling of C≡ N-based carbazole-arylamine hole transporting materials for efficient organic and perovskite solar cells. J Phys Chem Solids 182:111581

    CAS  Google Scholar 

  • Ashraf A et al (2019) A facile and concise route to (hydroxybenzoyl) pyrido [2, 3-d] pyrimidine heterocycle derivatives: synthesis, and structural, spectral and computational exploration. RSC Adv 9(59):34567–34580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azmi R et al (2018) High-performance dopant-free conjugated small molecule-based hole-transport materials for perovskite solar cells. Nano Energy 44:191–198

    CAS  Google Scholar 

  • Baviskar PK, Sankapal BR (2021) Dye-sensitized solar cells. In: Dhoble SJ et al (eds) Energy materials. Elsevier, pp 179–211

    Google Scholar 

  • Bhatta RS, Tsige M (2014) Chain length and torsional dependence of exciton binding energies in P3HT and PTB7 conjugated polymers: a first-principles study. Polymer 55(11):2667–2672

    CAS  Google Scholar 

  • Blanchard P et al (2019) Triphenylamine and some of its derivatives as versatile building blocks for organic electronic applications. Polym Int 68(4):589–606

    CAS  Google Scholar 

  • Cossi M et al (1998) Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett 286(3–4):253–260

    CAS  Google Scholar 

  • Dheivamalar S, Banu KB (2019) A DFT study on functionalization of acrolein on Ni-doped (ZnO) 6 nanocluster in dye-sensitized solar cells. Heliyon 5(12):e02903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Do K et al (2014) Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells. Chem Commun 50(75):10971–10974

    CAS  Google Scholar 

  • Elghazali A et al (2023) First-principles study on optoelectronic and photovoltaic properties in a P3HT/PCBM complex. Phys Chem Res 11(2):299–313

    CAS  Google Scholar 

  • Fatima A et al (2021) Designing of 5, 10-dihydroindolo [3, 2-b] indole (DINI) based donor materials for small molecule organic solar cells. J Comput Biophys Chem 20(01):71–84

    CAS  Google Scholar 

  • Feng J-Y et al (2019) Cost-effective dopant-free star-shaped oligo-aryl amines for high performance perovskite solar cells. J Mater Chem A 7(23):14209–14221

    CAS  Google Scholar 

  • Fonseca Guerra C et al (2004) Voronoi deformation density (VDD) charges: assessment of the mulliken, bader, hirshfeld, weinhold, and VDD methods for charge analysis. J Comput Chem 25(2):189–210

    PubMed  Google Scholar 

  • Frisch M et al (2016) Gaussian 16 revision C. 01. 2016. Gaussian Inc, Wallingford, p 421

    Google Scholar 

  • Gadre SR, Kulkarni SA, Shrivastava IH (1992) Molecular electrostatic potentials: a topographical study. J Chem Phys 96(7):5253–5260

    CAS  Google Scholar 

  • Gao H et al. (2023) Recent progress in non-fused ring electron acceptors for high performance organic solar cells. Ind Chem Mater

  • Guan L et al (2017) Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. J Mater Chem A 5(44):23319–23327

    CAS  Google Scholar 

  • Hussain R et al (2023) Designing of silolothiophene-linked triphenylamine-based hole transporting materials for perovskites and donors for organic solar cells-A DFT study. Sol Energy 253:187–198

    CAS  Google Scholar 

  • Jeon NJ et al (2013) Efficient inorganic–organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J Am Chem Soc 135(51):19087–19090

    CAS  PubMed  Google Scholar 

  • Kaltenbrunner M et al (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3(1):770

    PubMed  Google Scholar 

  • Kanoun A-A et al (2019) Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach. Sol Energy 182:237–244

    CAS  Google Scholar 

  • Khalid M et al (2021) Persistent prevalence of supramolecular architectures of novel ultrasonically synthesized hydrazones due to hydrogen bonding [X–H⋯ O; X= N]: experimental and density functional theory analyses. J Phys Chem Solids 148:109679

    CAS  Google Scholar 

  • Khan MU et al (2020) In silico modeling of new “Y-Series”-based near-infrared sensitive non-fullerene acceptors for efficient organic solar cells. ACS Omega 5(37):24125–24137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Seo JY, Park NG (2016) Material and device stability in perovskite solar cells. Chemsuschem 9(18):2528–2540

    CAS  PubMed  Google Scholar 

  • Krishnamoorthy T et al (2014) A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J Mater Chem A 2(18):6305–6309

    CAS  Google Scholar 

  • Li H et al (2014a) Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells. Chemsuschem 7(12):3420–3425

    CAS  PubMed  Google Scholar 

  • Li H et al (2014b) A simple 3, 4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. Angew Chem 126(16):4169–4172

    Google Scholar 

  • Li S et al (2017) Significant influence of the methoxyl substitution position on optoelectronic properties and molecular packing of small-molecule electron acceptors for photovoltaic cells. Adv Energy Mater 7(17):1700183

    Google Scholar 

  • Li Y et al (2018) Flexible and semitransparent organic solar cells. Adv Energy Mater 8(7):1701791

    Google Scholar 

  • Li X et al (2019) A small molecule donor containing a non-fused ring core for all-small-molecule organic solar cells with high efficiency over 11%. J Mater Chem A 7(8):3682–3690

    CAS  Google Scholar 

  • Liu J et al (2014) A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ Sci 7(9):2963–2967

    CAS  Google Scholar 

  • Lu T (2021) Simple, reliable, and universal metrics of molecular planarity. J Mol Model 27(9):263

    CAS  PubMed  Google Scholar 

  • Lv S et al (2014) Mesoscopic TiO2/CH3 NH3 PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives. Chem Commun 50(52):6931–6934

    CAS  Google Scholar 

  • Lv S et al (2015) Simple triphenylamine-based hole-transporting materials for perovskite solar cells. Electrochim Acta 182:733–741

    CAS  Google Scholar 

  • Ma R et al (2020) Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci China Chem 63:325–330

    CAS  Google Scholar 

  • Meng L et al (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361(6407):1094–1098

    CAS  PubMed  Google Scholar 

  • Molina-Ontoria A et al (2016) Benzotrithiophene-based hole-transporting materials for 18.2% perovskite solar cells. Angewandte Chem Int Ed 55(21):6270–6274

    CAS  Google Scholar 

  • Naeem N et al (2022) Dopant free triphenylamine-based hole transport materials with excellent photovoltaic properties for high-performance perovskite solar cells. Energ Technol 10(2):2100838

    CAS  Google Scholar 

  • O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29(5):839–845

    PubMed  Google Scholar 

  • Ottonelli M et al (2012) Koopmans’ transfer integral calculation: a comparison between the Hartree–Fock and the density functional results. Energy Proc 31:31–37

    CAS  Google Scholar 

  • Parthasarathi R et al (2003) Toxicity analysis of benzidine through chemical reactivity and selectivity profiles: a DFT approach. Internet Electron J Mol Des 2(12):798–813

    CAS  Google Scholar 

  • Rasool A et al (2021) Bithieno thiophene-based small molecules for application as donor materials for organic solar cells and hole transport materials for perovskite solar cells. ACS Omega 7(1):844–862

    PubMed  PubMed Central  Google Scholar 

  • Rasool A et al (2022) Synergistic engineering of end-capped acceptor and bridge on arylborane-arylamine macrocycles to boost the photovoltaic properties of organic solar cells. Opt Mater 123:111907

    CAS  Google Scholar 

  • Sabir S et al (2022) DFT molecular modeling of A2-D-A1-D-A2 type DF-PCIC based small molecules acceptors for organic photovoltaic cells. Chem Phys Lett 806:140026

    CAS  Google Scholar 

  • Safdar S et al (2023) Role of 9-phenyl-9H-carbazole based hole transport materials for organic and perovskite photovoltaics. Synth Met 297:117414

    CAS  Google Scholar 

  • Salim M et al (2021) Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell. J Mol Model 27:1–14

    Google Scholar 

  • Shafiq A et al (2023) Molecular engineering of anthracene core-based hole-transporting materials for organic and perovskite photovoltaics. ACS Omega 8(39):35937–35955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q et al (2022) Design of non-fused ring acceptors toward high-performance, stable, and low-cost organic photovoltaics. Acc Mater Res 3(6):644–657

    CAS  Google Scholar 

  • Siddique SA et al (2021) Deciphering the role of end-capped acceptor units for amplifying the photovoltaic properties of donor materials for high-performance organic solar cell applications. Comput Theor Chem 1205:113454

    CAS  Google Scholar 

  • Steck C et al (2015) A-D–A-type S, N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells. J Mater Chem A 3(34):17738–17746

    CAS  Google Scholar 

  • Sun X et al (2006) X-Shaped electroactive molecular materials based on oligothiophene architectures: facile synthesis and photophysical and electrochemical properties. Adv Func Mater 16(7):917–925

    CAS  Google Scholar 

  • Tahir MN et al (2019) Synthesis, single crystal analysis and DFT based computational studies of 2, 4-diamino-5-(4-chlorophenyl)-6-ethylpyrim idin-1-ium 3, 4, 5-trihydroxybenzoate-methanol (DETM). J Mol Struct 1180:119–126

    CAS  Google Scholar 

  • Tanaka K, Chujo Y (2021) New idea for narrowing an energy gap by selective perturbation of one frontier molecular orbital. Chem Lett 50(2):269–279

    CAS  Google Scholar 

  • Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4(2):297–306

    CAS  PubMed  Google Scholar 

  • Tong X et al (2016) High performance perovskite solar cells. Adv Sci 3(5):1500201

    Google Scholar 

  • Vennila M et al (2022) Theoretical spectroscopic electronic elucidation with different solvents (IEFPCM model), biological assessment and molecular docking studies on moroxydine-antiviral drug agent. J Mol Liq 355:118946

    CAS  Google Scholar 

  • Wang ZS et al (2007) A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv Mater 19(8):1138–1141

    CAS  Google Scholar 

  • Wang D et al (2014) Rational design and characterization of high-efficiency planar A–π–D–π–A type electron donors in small molecule organic solar cells: a quantum chemical approach. Mater Chem Phys 145(3):387–396

    CAS  Google Scholar 

  • Wu Y et al (2018) Influence of nonfused cores on the photovoltaic performance of linear triphenylamine-based hole-transporting materials for perovskite solar cells. ACS Appl Mater Interfaces 10(21):17883–17895

    CAS  PubMed  Google Scholar 

  • Xu B et al (2014) Carbazole-based hole-transport materials for efficient solid-state dye-sensitized solar cells and perovskite solar cells. Adv Mater 26(38):6629–6634

    CAS  PubMed  Google Scholar 

  • Yang M et al (2021) Non-fused ring acceptors for organic solar cells. Energy Mater 1(1):10008

    Google Scholar 

  • Yao H et al (2016) Molecular design of benzodithiophene-based organic photovoltaic materials. Chem Rev 116(12):7397–7457

    CAS  PubMed  Google Scholar 

  • Yaqoob U et al (2021) Structural, optical and photovoltaic properties of unfused Non-Fullerene acceptors for efficient solution processable organic solar cell (Estimated PCE greater than 12.4%): A DFT approach. J Mol Liq 341:117428

    CAS  Google Scholar 

  • Zahid S et al (2021) Tuning the optoelectronic properties of triphenylamine (TPA) based small molecules by modifying central core for photovoltaic applications. J Mol Model 27:1–14

    Google Scholar 

  • Zhan C-G, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107(20):4184–4195

    CAS  Google Scholar 

  • Zhang L et al (2016) Fine structural tuning of diketopyrrolopyrrole-cored donor materials for small molecule-fullerene organic solar cells: a theoretical study. Org Electron 32:134–144

    CAS  Google Scholar 

  • Zhong Z-Y et al (2022) Unfused-ring acceptors with dithienobenzotriazole core for efficient organic solar cells. Chin J Polym Sci 40(12):1586–1593

    CAS  Google Scholar 

Download references

Acknowledgements

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R398), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Iqbal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, Z., Salma, U., Basharat, A. et al. Enhancing the performance of thienyl imidazole-based non-fused heterocyclic materials by end-capped acceptor modifications for organic and perovskite solar cells. Chem. Pap. 78, 3233–3251 (2024). https://doi.org/10.1007/s11696-024-03308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-024-03308-6

Keywords

Navigation