Skip to main content
Log in

Preparation of gallic acid-containing PCL/gelatine scaffolds as an efficient drug delivery system for growth and proliferation of human stem cells

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Tissue engineering and regenerative medicine play a prominent role in the growth and proliferation of stem cells. Fabricating scaffold-based drug delivery systems (DDS) has opened a new gate for having efficient DDS and a platform for cell growth. The electrospun poly ε-caprolactone-gelatin (PCL-Gel or PG) nanofibers loaded with various concentrations of gallic acid (GA) (1% w/w (PGG1), 3% w/w (PGG3), 5%w/w (PGG5), 10% w/w (PGG10), and 20% w/w (PGG20)) were efficiently fabricated as efficient scaffolds for inducing the growth and proliferation of hWJ-MSCs. FT-IR, XRD, FE-SEM, tensile test, and water contact angle (WCA) were applied to study the scaffolds. The FT-IR and XRD techniques effectively confirmed the appropriate structure of scaffolds, and FE-SEM demonstrated the fabrication of nanofibrous scaffolds with average diameter ranges of 220.73 nm, 206 nm, 211.35 nm, 213.15 nm, 241.61 nm, and 298.94 nm for PG, PGG1, PGG3, PGG5, PGG10, and PGG20 scaffolds, respectively. Based on the results, PGG5 was shown to have appropriate mechanical property, average diameter, smooth morphology, better hydrophilicity, and favorable encapsulation efficiency. The controlled bioactive release (about 40% within a day) was measured for PGG5 using UV–Vis spectrophotometry. Next, the MTT test exhibited approximately 120.58% (after three days), 147.26% (after five days), and 153.77% (after seven days) of cell viabilities after treatment with GA150 (~ PGG5), while it was 218.02%, 219.31%, and PGG5 at the same conditions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdal-Hay A, Sheikh FA, Gómez-Cerezo N, Alneairi A, Luqman M, Pant HR, Ivanovski S (2022) A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. Eur Polymer J 162:110892

    CAS  Google Scholar 

  • Adepu S, Ramakrishna S (2021) Controlled drug delivery systems: current status and future directions. Molecules 26:5905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadi S, Shafiei SS, Sabouni F (2022) Electrospun nanofibrous scaffolds of polycaprolactone/gelatin reinforced with layered double hydroxide nanoclay for nerve tissue engineering applications. ACS Omega 7:28351–28360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alven S, Aderibigbe BA (2021) Fabrication of hybrid nanofibers from biopolymers and poly (vinyl alcohol)/poly (ε-caprolactone) for wound dressing applications. Polymers 13:2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asadi H, Ghaee A, Nourmohammadi J, Mashak A (2020) Electrospun zein/graphene oxide nanosheet composite nanofibers with controlled drug release as antibacterial wound dressing. Int J Polym Mater Polym Biomater 69:173–185

    CAS  Google Scholar 

  • Aytac Z, Kusku SI, Durgun E, Uyar T (2016) Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid. Mater Sci Eng, C 63:231–239

    CAS  Google Scholar 

  • Babaahmadi M, Tayebi B, Gholipour NM, Bendele P, Pheneger J, Kheimeh A, Kamali A, Molazem M, Baharvand H, Eslaminejad MB (2022) Long-term passages of human clonal mesenchymal stromal cells can alleviate the disease in the rat model of collagen-induced arthritis resembling early passages of different heterogeneous cells. J Tissue Eng Regenerat Med 16(12):1261–1275

    CAS  Google Scholar 

  • Behere I, Pardawala Z, Vaidya A, Kale V, Ingavle G (2021) Osteogenic differentiation of an osteoblast precursor cell line using composite PCL-gelatin-nHAp electrospun nanofiber mesh. Int J Polym Mater Polym Biomater 70:1281–1295

    CAS  Google Scholar 

  • Bonadies I, Maglione L, Ambrogi V, Paccez JD, Zerbini LF, Rocha E, Silva LF, Picanço NS, Tadei WP, Grafova I, Grafov A, Carfagna C (2017) Electrospun core/shell nanofibers as designed devices for efficient artemisinin delivery. Europ Polym J 89:211–220

    CAS  Google Scholar 

  • Böncü TE, Ozdemir N (2022) Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers. Beilstein J Nanotechnol 13:245–254

    Google Scholar 

  • Bootdee K, Nithitanakul M (2021) Poly (d, l-lactide-co-glycolide) nanospheres within composite poly (vinyl alcohol)/aloe vera electrospun nanofiber as a novel wound dressing for controlled release of drug. Int J Polym Mater Polym Biomater 70:223–230

    CAS  Google Scholar 

  • Borges-Vilches J, Unalan I, Fernández K, Boccaccini AR (2022) Fabrication of biocompatible electrospun poly (ε-caprolactone)/gelatin nanofibers loaded with pinus radiata bark extracts for wound healing applications. Polymers 14:2331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Liu Z, Chen M, Zhang H, Li X (2016) Electrospun gelatin fibers with a multiple release of antibiotics accelerate dermal regeneration in infected deep burns. Macromol Biosci 16:1368–1380

    CAS  PubMed  Google Scholar 

  • Chen T, Jiang H, Li X, Zhang D, Zhu Y, Chen X, Yang H, Shen F, Xia H, Zheng J, Xie K (2022) Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering. Int J Biol Macromol 197:103–110

    CAS  PubMed  Google Scholar 

  • Chou S-F, Luo L-J, Lai J-Y (2016) Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers. Acta Biomater 38:116–128

    CAS  PubMed  Google Scholar 

  • Chou S-F, Luo L-J, Lai J-Y, Ma DH-K (2017) Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials. Mater Sci Eng, C 71:1145–1155

    CAS  Google Scholar 

  • Díez-Pascual AM, Shuttleworth PS (2014) Layer-by-layer assembly of biopolyelectrolytes onto thermo/pH-responsive micro/nano-gels. Materials 7:7472–7512

    PubMed  PubMed Central  Google Scholar 

  • Egorov E, Pieters C, Korach-Rechtman H, Shklover J, Schroeder A (2021) Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Deliv Transl Res 11:345–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eren Böncü T, Ozdemir N (2022) Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers. Beilstein J Nanotechnol 13:245–254

    PubMed  PubMed Central  Google Scholar 

  • Frassetto L, Banerjee T, Powe N, Sebastian A (2018) Acid balance, dietary acid load, and bone effects—a controversial subject. Nutrients 10:571

    Google Scholar 

  • Gautam S, Chou C-F, Dinda AK, Potdar PD, Mishra NC (2014) Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Mater Sci Eng C 34:402–409

    CAS  Google Scholar 

  • Ghanbari M, Salavati-Niasari M, Mohandes F, Firouzi Z, Mousavi S-D (2021) The impact of zirconium oxide nanoparticles content on alginate dialdehyde-gelatin scaffolds in cartilage tissue engineering. J Mol Liq 335:116531

    CAS  Google Scholar 

  • Goli PP, Torbati MB, Parivar K, Khiavi AA, Yousefi M (2021) Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy. J Drug Del Sci Technol 65:102756

    Google Scholar 

  • Goyal R, Macri LK, Kaplan HM, Kohn J (2016) Nanoparticles and nanofibers for topical drug delivery. J Control Release 240:77–92

    CAS  PubMed  Google Scholar 

  • Guo Z, Xu J, Ding S, Li H, Zhou C, Li L (2015) In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering. J Biomater Sci Polym Ed 26:989–1001

    CAS  PubMed  Google Scholar 

  • Guo R, Li J, Chen C, Xiao M, Liao M, Hu Y, Liu Y, Li D, Zou J, Sun D, Torre V, Zhang Q, Chai R, Tang M (2021) Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids Surf B 200:111590

    CAS  Google Scholar 

  • He X, Feng B, Huang C, Wang H, Ge Y, Hu R, Yin M, Xu Z, Wang W, Fu W, Zheng J (2015) Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. Int J Nanomedicine 10:2089–2099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ (2019) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–18

    CAS  PubMed  Google Scholar 

  • Hu H, Nie L, Feng S, Suo J (2013) Preparation, characterization and in vitro release study of gallic acid loaded silica nanoparticles for controlled release. Die Pharmaz Int J Pharmaceut Sci 68:401–405

    CAS  Google Scholar 

  • Jhala D, Rather H, Vasita R (2016) Polycaprolactone–chitosan nanofibers influence cell morphology to induce early osteogenic differentiation. Biomater Sci 4:1584–1595

    CAS  PubMed  Google Scholar 

  • Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, Li J (2021) Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 127:56–79

    CAS  PubMed  Google Scholar 

  • Joshi A, Xu Z, Ikegami Y, Yoshida K, Sakai Y, Joshi A, Kaur T, Nakao Y, Yamashita Y-I, Baba H, Aishima S, Singh N, Ijima H (2021) Exploiting synergistic effect of externally loaded bFGF and endogenous growth factors for accelerated wound healing using heparin functionalized PCL/gelatin co-spun nanofibrous patches. Chem Eng J 404:126518

    CAS  Google Scholar 

  • Kim HW, Knowles JC, Kim HE (2005) Porous scaffolds of gelatin–hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J Biomed Mater Res Part b Appl Biomater Offic J the Soc Biomater Japan Soc Biomater Austral Soc Biomater Korean Soc Biomater 74:686–698

    Google Scholar 

  • Li J, Kim SY, Chen X, Park HJ (2016) Calcium-alginate beads loaded with gallic acid: preparation and characterization. LWT Food Sci Technol 68:667–673

    CAS  Google Scholar 

  • Li T, He H, Yang Z, Wang J, Zhang Y, He G, Huang J, Song D, Ni J, Zhou X (2021a) Strontium-doped gelatin scaffolds promote M2 macrophage switch and angiogenesis through modulating the polarization of neutrophils. Biomater Sci 9:2931–2946

    CAS  PubMed  Google Scholar 

  • Li T, He H, Yang Z, Wang J, Zhang Y, He G, Huang J, Song D, Ni J, Zhou X, Zhu J, Ding M (2021b) Strontium-doped gelatin scaffolds promote M2 macrophage switch and angiogenesis through modulating the polarization of neutrophils. Biomater Sci 9:2931–2946

    CAS  PubMed  Google Scholar 

  • Liu T, Lin M, Wu F, Lin A, Luo D, Zhang Z (2022) Development of a nontoxic and efficient gene delivery vector based on histidine grafted chitosan. Int J Polym Mater Polym Biomater 71:717–727

    CAS  Google Scholar 

  • Loukelis K, Papadogianni D, Chatzinikolaidou M (2022) Kappa-carrageenan/chitosan/gelatin scaffolds enriched with potassium chloride for bone tissue engineering. Int J Biol Macromol 209:1720–1730

    CAS  PubMed  Google Scholar 

  • Masaeli E, Morshed M, Rasekhian P, Karbasi S, Karbalaie K, Karamali F, Abedi D, Razavi S, Jafarian-Dehkordi A, Nasr-Esfahani MH (2012) Does the tissue engineering architecture of poly (3-hydroxybutyrate) scaffold affects cell–material interactions? J Biomed Mater Res Part A 100:1907–1918

    Google Scholar 

  • Morel A, Domaschke S, Urundolil Kumaran V, Alexeev D, Sadeghpour A, Ramakrishna SN, Ferguson SJ, Rossi RM, Mazza E, Ehret AE, Fortunato G (2018) Correlating diameter, mechanical and structural properties of poly(l-lactide) fibres from needleless electrospinning. Acta Biomater 81:169–183

    CAS  PubMed  Google Scholar 

  • Nankali E, Shaabanzadeh M, Torbati MB (2020) Fluorescent tamoxifen-encapsulated nanocapsules functionalized with folic acid for enhanced drug delivery toward breast cancer cell line MCF-7 and cancer cell imaging. Naunyn Schmiedebergs Arch Pharmacol 393:1211–1219

    CAS  PubMed  Google Scholar 

  • Nejati-Koshki K, Pilehvar-Soltanahmadi Y, Alizadeh E, Ebrahimi-Kalan A, Mortazavi Y, Zarghami N (2017) Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine. Drug Dev Ind Pharm 43:1978–1988

    CAS  PubMed  Google Scholar 

  • Neo YP, Ray S, Jin J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Liu D, Quek SY (2013) Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein–gallic acid system. Food Chem 136:1013–1021

    CAS  PubMed  Google Scholar 

  • Nguyen DD, Luo L-J, Yang C-J, Lai J-Y (2022) Highly retina-permeating and long-acting resveratrol/metformin nanotherapeutics for enhanced treatment of macular degeneration. ACS Nano 17:168–183

    PubMed  Google Scholar 

  • Pei Q, Han Q, Tang F, Xu S, Wu J, Zhang M, Chang X-P, Ding A (2022) In situ synthesis of reduction-responsive organogelators via oxidative coupling of tritylthio-terminated gallic acid derivatives. Colloids Surf A 641:128602

    CAS  Google Scholar 

  • Phiriyawirut M, Phaechamud T (2012) Gallic acid-loaded cellulose acetate electrospun nanofibers: thermal properties, mechanical properties, and drug release behavior.

  • Quint JP, Samandari M, Abbasi L, Mollocana E, Rinoldi C, Mostafavi A, Tamayol A (2022) Nanoengineered myogenic scaffolds for skeletal muscle tissue engineering. Nanoscale 14:797–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rashidi L, Vasheghani-Farahani E, Soleimani M, Atashi A, Rostami K, Gangi F, Fallahpour M, Tahouri MT (2014) A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on caco-2 cells. J Nanopart Res 16:2285

    Google Scholar 

  • Rather HA, Thakore R, Singh R, Jhala D, Singh S, Vasita R (2018) Antioxidative study of cerium oxide nanoparticle functionalised PCL-gelatin electrospun fibers for wound healing application. Bioact Mater 3:201–211

    PubMed  Google Scholar 

  • Rubentheren V, Ward TA, Chee CY, Tang CK (2015) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohyd Polym 115:379–387

    CAS  Google Scholar 

  • Sadeghi-Soureh S, Jafari R, Gholikhani-Darbroud R, Pilehvar-Soltanahmadi Y (2020) Potential of Chrysin-loaded PCL/gelatin nanofibers for modulation of macrophage functional polarity towards anti-inflammatory/pro-regenerative phenotype. J Drug Deliv Sci Technol 58:101802

    CAS  Google Scholar 

  • Samy M, Ekram B, Abd El-Hady BM, Ayoub MM (2023) In vitro release study of electrospun poly (ε-caprolactone)/gelatin nanofiber mats loaded with 5-fluorouracil. Polym Bull 4:1–20

    Google Scholar 

  • Steffi C, Wang D, Kong CH, Wang Z, Lim PN, Shi Z, San Thian E, Wang W (2018) Estradiol-loaded poly (ε-caprolactone)/silk fibroin electrospun microfibers decrease osteoclast activity and retain osteoblast function. ACS Appl Mater Interfaces 10:9988–9998

    CAS  PubMed  Google Scholar 

  • Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P (2007) Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48:7546–7557

    CAS  Google Scholar 

  • Unalan I, Endlein SJ, Slavik B, Buettner A, Goldmann WH, Detsch R, Boccaccini AR (2019) Evaluation of electrospun poly (ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing. Pharmaceutics 11:570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Xiong M, Sun Q, Tan W-S, Cai H (2022) Three-dimension co-culture of hematopoietic stem cells and differentiated osteoblasts on gallic acid grafted-chitosan scaffold as a model of hematopoietic stem cells niche. Stem Cell Rev Rep 18:1168–1180

    CAS  PubMed  Google Scholar 

  • Xia G, Wang S, He M, Zhou X, Zhao Y, Wang J, Xue C (2015) Anti-osteoporotic activity of sialoglycoproteins isolated from the eggs of carassius auratus by promoting osteogenesis and increasing OPG/RANKL ratio. J Funct Foods 15:137–150

    CAS  Google Scholar 

  • Xue N, Jia Y, Li C, He B, Yang C, Wang J (2020) Characterizations and assays of α-glucosidase inhibition activity on gallic acid cocrystals: Can the cocrystals be defined as a new chemical entity during binding with the α-glucosidase? Molecules 25:1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C-J, Nguyen DD, Lai J-Y (2023) Poly(l-Histidine)-mediated on-demand therapeutic delivery of roughened ceria nanocages for treatment of chemical eye injury. Adv Sci 10(26):2302174

    CAS  Google Scholar 

  • Yao R, He J, Meng G, Jiang B, Wu F (2016) Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses. J Biomater Sci Polym Ed 27:824–838

    CAS  PubMed  Google Scholar 

  • Zheng R, Duan H, Xue J, Liu Y, Feng B, Zhao S, Zhu Y, Liu Y, He A, Zhang W, Liu W, Cao Y, Zhou G (2014) The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 35:152–164

    PubMed  Google Scholar 

Download references

Acknowledgements

The laboratory support of this work by the Islamic Azad University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Bikhof Torbati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

Research did not involve human and/or animal participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

kaaba, M., Bikhof Torbati, M., Majd, A. et al. Preparation of gallic acid-containing PCL/gelatine scaffolds as an efficient drug delivery system for growth and proliferation of human stem cells. Chem. Pap. 78, 2589–2602 (2024). https://doi.org/10.1007/s11696-023-03263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-03263-8

Keywords

Navigation