Skip to main content
Log in

Optical efficiency of CdTe QDs for metal ion sensing in the presence of different thiol-based capping agents

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In the present work, various capping ligands [thioglycolic acid (TGA), glutathione reduced (L-GSH) and L-cysteine (L-Cyst.)] have been used to modify the surface chemistry of CdTe quantum dots (QDs). Different capped CdTe QDs are prepared by aqueous phase route and characterized by UV–visible, photo-luminescence and FTIR spectrometry. The structural properties of uncapped and capped CdTe QDs were investigated by the scanning electron microscopy and energy-dispersive X-ray spectroscopy. Optical signal of distinct capped CdTe QDs was observed to be pH, time and temperature dependent. In the presence of most of the metals ions (Xn+), capped CdTe has shown strong “Turn-Off” fluorescence responses due to 1:1 complexation between metal ions and QDs except for Cr3+ and Pb2+metal ions. In the presence of Cr3+ and Pb2+ metal ions “Turn-On” fluorescence response appeared for L-Cyst. + CdTe QDs due to fluorescence resonance energy transfer. The output of Benesi–Hildebrand relation and graphical Job’s plots have established the existence of strong 1:1 complexation (Xn+: TGA + CdTe, L-GSH + CdTe, L-Cyst. + CdTe) between distinctly capped CdTe and metal ions. Further, strong appearance of relative fluorescence intensities (F − F0/F0) established the better sensing capability of L-Cyst. + CdTe and TGA + CdTe QDs for Cr3+, Pb2+ ions. The lower value of limit of detection for TGA + CdTe QDs for Pb2+ and L-Cyst. + CdTe QD for Cr3+ and Pb2+ metals have showed better results towards sensing. The performance of capped CdTe QD in the presence of real sample shows good recovery (66–109%), precision and accuracy(0.2–2%) with a sensitivity of 10–7 M. Our findings have shown a strong possibility of L-Cyst. and TGA capped CdTe QDs to be used as better metal ion sensors for Cr3+ and Pb2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdelhamid HN, Wu HF (2018) Selective biosensing of Staphylococcus aureus using chitosan quantum dots. Spectrochim Acta Mol Biomol Spectrosc 188:50–56. https://doi.org/10.1016/j.saa.2017.06.047

    Article  CAS  Google Scholar 

  • Ali EM, Zheng Y, Yu HH, Ying JY (2007) Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal Chem 79:9452–9458

    CAS  PubMed  Google Scholar 

  • Almendral-Parra MJ, Alonso-Mateos A, Boyero-Benito JF, Sanchez-Paradinas S, Rodrıguez-Fernandez E (2014) A novel approach to the fabrication of CdSe quantum dots in aqueous solution: procedures for controlling size, fluorescence intensity, and stability over time. J Nanomater. https://doi.org/10.1155/2014/397469

    Article  Google Scholar 

  • Arancibia V, Valderrama M, Silva K, Tapia T (2003) Determination of chromium in urine samples by complexation-supercritical fluid extraction and liquid or gas chromatography. J Chromatogr B 785:303–309

    CAS  Google Scholar 

  • Badawi A, Al-Hosiny N, Abdallah S, Negm S, Talaat H (2013) Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells. Sol Energy 88:137–143

    CAS  Google Scholar 

  • Baslak C, Kars MD, Karaman M, Kus M, Cengeloglu Y, Ersoz M (2015) Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications. J Lumin 160:9–15

    CAS  Google Scholar 

  • Beloglazova NV, Shmelin PS, Speranskaya ES, Lucas B, Helmbrecht C, Knopp D, Niessner R, Saeger SD, Goryacheva IY (2013) Quantum dot loaded liposomes as fluorescent labels for immunoassay. Anal Chem 85:7197–7204

    CAS  PubMed  Google Scholar 

  • Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    CAS  Google Scholar 

  • Chen Y, Chen Z, He Y, Lin H, Sheng P, Liu C, Cai Q (2010) L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene. Nanotechnology 21(12):125502

    PubMed  Google Scholar 

  • Chen Y, Chen Z, He Y, Lin H, Sheng P, Liu C, Cai Q (2010) L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene. Nanotechnology 21(12):125502

    PubMed  Google Scholar 

  • Chin S, Tan S, Pang S, Ng S (2017) Nitrogen doped carbon nanodots as fluorescent probes for selective detection and quantification of Ferric (III) ions. Opt Mater 73:77–82

    CAS  Google Scholar 

  • Chullasat K, Nurerk P, Kanatharana P, Davis F, Bunkoed O (2018) A facile optosensing protocol based on molecularly imprinted polymer coated on CdTe quantum dots for highly sensitive and selective amoxicillin detection. Sens Actuators B Chem 254:255–263

    CAS  Google Scholar 

  • Cliff N (1998) The eigenvalues-greater-than-one rule and the reliability of components. Psychol Bull 103:276–279

    Google Scholar 

  • Ding Y, Shen SZ, Sun H, Sun K, Liu F (2014) Synthesis of L-glutathione-capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous solutions. Sens Actuators b Chem 203:35–43. https://doi.org/10.1016/j.snb.2014.06.054

    Article  CAS  Google Scholar 

  • Diwan P, Bharadwaj A (2006) Nanoelectronics. Pentagon Press New Delhi

  • Elmizadeh H, Soleimani M, Faridbod F, Bardajee GR (2017) Ligand-capped CdTe quantum dots as a fluorescent nanosensor for detection of copper ions in environmental water sample. J Fluoresc 27(6):2323–2333

    CAS  PubMed  Google Scholar 

  • EychmüllerA RAL (2000) Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals. Pure Appl Chem 72(1–2):179–188

    Google Scholar 

  • Feng Y, Liu L, Hu S, Zou P, Zhang J, Huang C, Zhang X (2016) Efficient fluorescence energy transfer system between fluorescein isothiocyanate and CdTe quantum dots for the detection of silver ions. Luminescence 31(2):356–363

    CAS  PubMed  Google Scholar 

  • Gao M, Kirstein S, Möhwald H, Rogach AL, Kornowski A, Eychmüller A, Weller H (1998) Strongly photo luminescent CdTe nanocrystals by proper surface modification. J Phys Chem B 102:8360–8363

    CAS  Google Scholar 

  • Genger UR, Grabolle M, Jaricot SC, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Google Scholar 

  • Green M (2010) The nature of quantum dot capping ligands. J Mater Chem 20:5797. https://doi.org/10.1039/c0jm00007h

    Article  CAS  Google Scholar 

  • Guerrini L, Alvarez-Puebla R, Pazos-Perez N (2018) Surface modifications of nanoparticles for stability in biological fluids. Materials 11:1154. https://doi.org/10.3390/ma11071154

    Article  CAS  PubMed Central  Google Scholar 

  • Hu Z, Xia R, Kais S (2020) A quantum algorithm for evolving open quantum dynamics on quantum computing devices. Sci Rep 10:3301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CY (1982) Determination of binding stoichiometry by the continuous variation method: the job plot. Methods Enzymol 87:509–525

    CAS  PubMed  Google Scholar 

  • Husseini HBA, Abdalah SF, Khursan AHA, Naimee KAMA, Meucci R, Arecchi FT (2020) Encrypted chaos in quantum dot light emitting diode. J Phys 65:398–404

    Google Scholar 

  • Ishikawa M, Biju V (2010) Luminescent quantum dots, making invisibles visible in bioimaging. Prog Mol Biol Transl Sci 104:53–99

    Google Scholar 

  • Jocelin G, Arivarasan A, Ganesan M, Prasad NR, Sasikala G (2016) Synthesis of colloidal quantum dots coated with mercaptosuccinic acid for early detection and therapeutics of oral cancers. Int J Nanosci 15:1650015. https://doi.org/10.1142/s0219581x16500150

    Article  CAS  Google Scholar 

  • Kagan CR, Lifshitz E, Sargent EH, Talapin DV (2016) Building devices from colloidal quantum dots. Science 353:6302

    Google Scholar 

  • Kamyabi MA, Hajari N, Moharramnezhad MA (2021) promising sensitive electrochemiluminescence hydrogen peroxide sensor based on incorporated CuO nanostructures on 3-D Ni foam. Chem Pap. https://doi.org/10.1007/s11696-021-01584-0

    Article  Google Scholar 

  • Kang Z, Zhang Y, Menkara H, Wagner BK, Summers CJ, Lawrence W, Nagarkar V (2011) CdTe quantum dots and polymer nanocomposites for x-ray scintillation and imaging. Appl Phys Lett 98(18):181914

    PubMed  PubMed Central  Google Scholar 

  • Kroupa DM, Vörös M, Brawand NP, McNichols BW, Miller EM, Gu J, Beard MC (2017) Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat Commun 8(1):1–8

    Google Scholar 

  • Labeb M, Sakr AH, Soliman M, Abdel-Fettah TM, Ebrahim S (2018) Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions. Opt Mater 79:331–335

    CAS  Google Scholar 

  • Litvin AP, Martynenko IV, Purcell-Milton F, Baranov AV, Fedorov AV, Gun’Ko YK (2017) Colloidal quantum dots for optoelectronics. J Mater Chem A 5(26):13252–13275

    CAS  Google Scholar 

  • Liu Y, Hou W, Sun H, Cui C, Zhang L, Jiang Y, Tan W (2017) Thiol–ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. Chem Sci 8(9):6182–6187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud WE, Al-Amri AM, Yaghmour SJ (2012) Low temperature synthesis of CdSe capped 2-mercaptoethanol quantum dots. Opt Mater 34(7):1082–1086

    CAS  Google Scholar 

  • Malik MA, O’Brien P, Revaprasadu NA (2002) Simple route to the synthesis of core/ shell nanoparticles of chalcogenides. Chem Mater 14:2004–2010

    CAS  Google Scholar 

  • Mandal A, Tamai N (2008) Influence of acid on luminescence properties of thioglycolic acid-capped CdTe quantum dots. J Phys Chem C 112(22):8244–8250

    CAS  Google Scholar 

  • Murase N, Gao M (2004) Preparation and photoluminescence of water-dispersible ZnSe nanocrystals. Mater Lett 58:3898–3902

    CAS  Google Scholar 

  • Ngamdee K, Chaiendoo K, Saiyasombat C, Busayaporn W, Ittisanronnachai S, Promarak V, Ngeontae W (2019) Highly selective circular dichroism sensor based on D-penicillamine/cysteamine cadmium sulfide quantum dots for copper (II) ion detection. Spectrochim Acta Part A Mol Biomol Spectrosc 211:313–321

    CAS  Google Scholar 

  • Nideep TK, Ramya M, Kailasnath M (2019) The influence of ZnS buffer layer on the size dependent efficiency of CdTe quantum dot sensitized solar cell. Superlattices Microstruct 130:175–181

    CAS  Google Scholar 

  • Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL (2016) Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat Nanotechnol 11:49–486

    Google Scholar 

  • Pal M, Mathews NR, Santiago P, Mathew X (2012) A facile one-pot synthesis of highly luminescent CdS nanoparticles using thioglycerol as capping agent. J Nanopart Res 14:916

    Google Scholar 

  • Paul D (2017) Research on heavy metal pollution of river Ganga: a review. Ann Agrar Sci. https://doi.org/10.1016/j.aasci.2017.04.001

    Article  Google Scholar 

  • Pei J, Zhu H, Wang X, Zhang H, Yang X (2012) Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection. Anal Chim Acta 757:63–68

    CAS  PubMed  Google Scholar 

  • Petrovic M, Fernández-Alba AR, Borrull F, Marce RM, Mazo EG, Barceló D (2002) Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environ Toxicol Chem Int J 21(1):37–46

    CAS  Google Scholar 

  • Pooja, Chowdhury P (2021) Functionalized CdTe fluorescence nanosensor for the sensitive detection of water borne environmentally hazardous metal ions. Opt Mater 111:110584

    CAS  Google Scholar 

  • Pooja, Rana M, Chowdhury P (2021) Modern applications of quantum dots: environmentally hazardous metal ion sensing and medical imaging. Elsevier, pp 465–505

    Google Scholar 

  • Pu Y, Cai F, Wang D, Wang JX, Chen JF (2018) Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind Eng Chem Res 57(6):1790–1802

    CAS  Google Scholar 

  • Rana M, Chowdhury P (2019) Studies on size dependent structures and optical properties of CdSeS clusters. J Cluster Sci 31:1111

    Google Scholar 

  • Rana M, Chowdhury P (2019b) L-glutathione capped CdSeS/ZnS quantum dot sensor for the detection of environmentally hazardous metal ions. J Lumin 206:105–112

    CAS  Google Scholar 

  • Rana M, Jain A, Rani V, Chowdhury P (2020) Glutathione capped core/shell CdSeS/ZnS quantum dots as a medical imaging tool for cancer cells. Inorg Chem Commun 112:107723

    CAS  Google Scholar 

  • Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2:781–784

    CAS  Google Scholar 

  • Ribeiro DSM, Castro RC, Pascoa RNMJ, Soares JX, Rodrigues SSM, Santos JLM (2019) Tuning CdTe quantum dots reactivity for multipoint detection of mercury(II), silver(I) and copper(II). J Lumin 207:386–396

    CAS  Google Scholar 

  • Riedinger A, Zhang F, Dommershausen F, Röcker C, Brandholt S, Nienhaus GU, Koert U, Parak WJ (2010) Ratiometric optical sensing of chloride ions with organic fluorophore-gold nanoparticle hybrids: a systematic study of design parameters and surface charge effects. Small 22:2590–2597

    Google Scholar 

  • Rodas DS, Corns WT, Chenbm B, Stockwel PB (2010) Atomic Fluorescence Spectrometry: a suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. J Anal at Spectrom 25:933–946

    Google Scholar 

  • Sadek MS, Kumar R, Babu MS (2009) Optical properties of thiol-stabilised CdTe nanoparticles. Int J Nanoparticles 2(1–6):20–29

    Google Scholar 

  • Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2:21–25

    Google Scholar 

  • Snyder RG, Hsu SL, Krimm S (1978) Vibrational spectra in the C H stretching region and the structure of the polymethylene chain. Spectrochim Acta Part A 34(4):395–406

    Google Scholar 

  • Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655

    CAS  Google Scholar 

  • Subramanian S, Ganapathy S, Rajaram M, Ayyaswamy A (2020) Tuning the optical properties of colloidal quantum dots using thiol group capping agents and its comparison. Mater Chem Phys 249:123127

    CAS  Google Scholar 

  • Suoa B, Sub X, Wub J, Chena D, Guo Z (2010) Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: fabrication, characterization and optical properties. Mater Chem Phys 119:237–242

    Google Scholar 

  • Takagahara T, Takeda K (1992) Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys Rev B 46:578–581

    Google Scholar 

  • Talmage SS (1994) Environmental and human safety of major surfactants: alcohol ethoxylates and alkylphenol ethoxylates. CRC Press

    Google Scholar 

  • Tang J, Marcus RA (2006) Determination of energetics and kinetics from single-particle intermittency and ensemble-averaged fluorescence intensity decay of quantum dots. J Chem Phys 125:044703

    Google Scholar 

  • Vaishnavi E, Renganathan R (2013) CdTe quantum dot as a fluorescence probe for vitamin B(12) in dosage form. Spectrochim Acta A Mol Biomol Spectrosc 115:603–609. https://doi.org/10.1016/j.saa.2013.06.068

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Meng M, Song Z, Gao L, Li H, Dai J, Yan Y (2014) Synthesis of molecularly imprinted silica nanospheres embedded mercaptosuccinic acid-coated CdTe quantum dots for selective recognition of λ-cyhalothrin. J Lumin 153:326–332

    CAS  Google Scholar 

  • Willard DM (2003) Nanoparticles in bioanalytics. Anal Bioanal Chem 376:84–286

    Google Scholar 

  • Wu HF, Gopal J, Abdelhamid HN, Hasan N (2012) Quantum dot applications endowing novelty to analytical proteomics. Proteomics 12:2949–2961. https://doi.org/10.1002/pmic.201200295

    Article  CAS  PubMed  Google Scholar 

  • Zare H, Ghalkhani M, Akhavan O, Taghavinia N, Marandi M (2017) Highly sensitive selective sensing of nickel ions using repeatable fluorescence quenching-emerging of the CdTe quantum dots. Mater Res Bull 95:532–538

    CAS  Google Scholar 

  • Zeeb M, Ganjali MR, Norouzi P (2012) Pre concentration and trace determination of chromium using modified ionic liquid cold-induced aggregation dispersive liquid-liquid micro extraction: application to different water and food samples. Food Anal Methods 6:1398–1406

    Google Scholar 

  • Zhang Y, Guo X, Si W, Jia L, Qian X (2008) Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxy ethyl amino chain as receptor. Org Lett 10:473–476

    CAS  PubMed  Google Scholar 

  • Zheng Y, Gao S, Ying JY (2007) Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv Mater 19(3):376–380

    CAS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PY was involved in data curation, writing—original draft preparation, visualization, investigation, software, validation, writing—reviewing and editing. PC was involved in conceptualization, methodology, writing—reviewing and editing and supervision.

Corresponding author

Correspondence to Papia Chowdhury.

Ethics declarations

Conflict of interest

The authors Dr. Papia Chowdhury and Pooja Yadav declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5654 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Chowdhury, P. Optical efficiency of CdTe QDs for metal ion sensing in the presence of different thiol-based capping agents. Chem. Pap. 76, 1833–1850 (2022). https://doi.org/10.1007/s11696-021-01991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01991-3

Keywords

Navigation