Skip to main content
Log in

Role of hydrogen bonding in establishment of a crystalline network of Cu (II) complex with hydrazone-derived ligand: optoelectronic studies

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

For the first time, a new Cu(II) complex including pyrazine (pyz) and a tridentate O,N,O–donor hydrazone ligand formulated as Cu(L)(pyz)(CH3OH)]+ (1) (LH=[CF3C(OH)=CH–C(CH3)=N–NH–CO–C6H4(OH)]) (CuClC 17 H 18 F 3 N 4 O 4 ) has been investigated using density functional theory (DFT) methods. The DFT approaches have been performed by applying B3LYP/LANL2DZ/6–311 + G(d, p) and full potential linearized augmented plane wave (FP–LAPW) methods. The complex belongs to triclinic crystallographic system with space group of P1, Z = 2. Selected 1 as monomeric unit (1-mon) through a variety of non-covalent interactions containing hydrogen bonds (HBs) and π-stacking, constructs a 2-D coordination polymeric plane. The dispersion corrected density functional theory (DFT-D) calculations indicate that the conventional O–H···N and the non-conventional C–H···F HBs, govern the related network (1-net) formation. The calculated-B3LYP/LANL2DZ/6–311 + G(d, p) electronic spectrum in gas phase in good agreement with the experimental one shows five major bands in the range of 268–582 nm that could be assigned to MLCT and LLCT transitions with n → π* character. Calculated optoelectronic spectra by FP–LAPW show that Cu–3d state play key role in optical transitions and plasma wavelength of 243 nm found for this studied compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed AH, Thabet MS (1006) Metallo-hydrazone complexes immobilized in zeolite Y: synthesis, identification and acid violet-1 degradation. J Mol Struct 2011:527–535

    Google Scholar 

  • Bagherzadeh M, Zare M, Salemnoush T, Özkar S, Akbayrak S (2014) Immobilization of dioxomolybdenum(VI) complex bearing salicylidene 2-picoloyl hydrazone on chloropropyl functionalized SBA-15: a highly active, selective and reusable catalyst in olefin epoxidation. Appl Catal A 475:55–62

    Article  CAS  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  • Bindu P, Kurup MRP, Satyakeerthy TR (1999) Epr, cyclic voltammetric and biological activities of copper(II) complexes of salicylaldehyde N(4)-substituted thiosemicarbazone and heterocyclic bases. Polyhedron 18:321–331

    Article  CAS  Google Scholar 

  • Bishop R (1996) Designing new lattice inclusion hosts. Chem Soc Rev 25:311–319

    Article  CAS  Google Scholar 

  • Bond AD (2007) What is a co-crystal? CrystEngComm 9:833–834

    Article  CAS  Google Scholar 

  • Bose D, Banerjee J, Rahaman SH, Mostafa G, Fun H-K, Walsh RDB, Zaworotko J, Ghosh BK (2004) Polymeric end-to-end bibridged cadmium(II)thiocyanates containing monodentate and bidentate N-donor organic blockers: supramolecular synthons based on π–π and/or C-H···π interactions. Polyhedron 23:2045–2053

    Article  CAS  Google Scholar 

  • Boys SB, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  • Braga D, Grepioni F, Orpen AG (1999) From molecules to crystals to materials, crystal engineering. Kluwer, Dordrecht

    Book  Google Scholar 

  • Brammer L, Espallargas GM, Libri S (2008) Combining metals with halogen bonds. CrystEngComm 10:1712–1727

    Article  CAS  Google Scholar 

  • Bui TTT, Dahaoui S, Lecomte C, Desiraju GR, Espinosa E (2009) The nature of halogen–halogen interactions: a model derived from experimental charge-density analysis. Angew Chem Int Ed 48:3838–3841

    Article  CAS  Google Scholar 

  • Carlucci L, Ciani G, Proserpio DM (2003) Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord Chem Rev 246:247–289

    Article  CAS  Google Scholar 

  • Chahkandi M (2016) Theoretical investigation of non-covalent interactions and spectroscopic properties of a new mixed-ligand Co(II) complex. J Mol Struct 1111:193–200

    Article  CAS  Google Scholar 

  • Chahkandi M, Khoshbakht BM, Mirzaei M (1095) A theoretical study of intramolecular H-bonding and metal–ligand interactions in some complexes with bicyclic guanidine ligands. Comput Theor Chem 2016:36–43

    Google Scholar 

  • Chahkandi M, Bhatti MH, Yunus U, Shaheen S, Nadeem M, Nawaz Tahir M (2017) Synthesis and comprehensive structural studies of a novel amide based carboxylic acid derivative: non-covalent interactions. J Mol Struct 1133:499

    Article  CAS  Google Scholar 

  • Chrappov J, Schwendt P, Sivk M, Repisky´ M, Malkin VG, Marek J (2009) Dinuclear fluoro-peroxovanadium(V) complexes with symmetric and asymmetric peroxo bridges: syntheses, structures and DFT studies. Dalton Trans 3:465–473

    Article  Google Scholar 

  • Chun H, Jin N (2009) A unique three-dimensional MOF with 8-connected bcu topology out of customary building blocks. Bull Korean Chem Soc 30:1405–1406

    Article  CAS  Google Scholar 

  • Chun H, Seo J (2009) Discrimination of small gas molecules through adsorption: reverse selectivity for hydrogen in a flexible metal–organic framework. Inorg Chem 48:9980–9982

    Article  CAS  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  • Deng ZP, Huo L-H, Li M-S, Zhang L-W, Zhu Z-B, Zhao H, Gao S (2011) Syntheses, structures, and luminescent properties of silver(I) complexes constructed from ortho-hydroxyl arenesulfonic acids. Cryst Growth Des 11:3090–3100

    Article  CAS  Google Scholar 

  • Desiraju GR (2003) Structure and function, perspectives in supramolecular chemistry, crystal engineering. Wiley, Chichester

    Google Scholar 

  • Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. OUP, Oxford

    Google Scholar 

  • Egli M, Sarkhel S (2007) Lone pair–aromatic interactions: to stabilize or not to stabilize. Acc Chem Res 40:197–205

    Article  CAS  Google Scholar 

  • Eshtiagh-Hosseini H, Mirzaei M, Biabani M, Lippolis V, Chahkandi M, Bazzicalupi C (2013a) Insight into the connecting roles of interaction synthons and water clusters within different transition metal coordination compounds of pyridine-2,5-dicarboxylic acid: experimental and theoretical studies. CrystEngComm 15:6752–6768

    Article  CAS  Google Scholar 

  • Eshtiagh-Hosseini H, Chahkandi M, Housaindokht MR, Mirzaei M (2013b) Bromide oxidation mechanism by vanadium bromoperoxidase functional models with new tripodal amine ligands: a comprehensive theoretical calculations study. Polyhedron 60:93–101

    Article  CAS  Google Scholar 

  • Fernando M, Claudio OA (2005) Theoretical study of the electronic spectrum of binuclear gold(I) complexes. Int J Quant Chem 103:34–44

    Article  Google Scholar 

  • Frisch MJ, Trucks GW et al (2009) GAUSSIAN09, revision A.02. Gaussian Inc., Wallingford

    Google Scholar 

  • Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, Dordrecht

    Book  Google Scholar 

  • Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 111:2597–2625

    Article  CAS  Google Scholar 

  • Han Z, Wei X, Xu C, Chiang CL, Zhang Y, Wu R, Ho W (2016) Imaging van der Waals interactions. J Phys Chem Lett 7(24):5205–5211

    Article  CAS  Google Scholar 

  • Hosseini-Monfared H, Bikas R, Mahboubi-Anarjan P, Blake AJ, Lippolis V, Burcu Arslan N, Kazak C (2014) Oxidovanadium(V) complexes containing hydrazone based O, N, O-donor ligands: synthesis, structure, catalytic properties and theoretical calculations. Polyhedron 69:90–102

    Article  CAS  Google Scholar 

  • Jabłoński M (2016) Comparative study of geometric and QTAIM-based differences between XH···Y intramolecular charge-inverted hydrogen bonds, M1···(HX) agostic bonds and M2···(η2-XH) σ interactions (X = Si, Ge; Y = Al, Ga; M1 = Ti, Co; M2 = Mn, Fe, Cr). Comput Theor Chem 1096:54–65

    Article  Google Scholar 

  • Janjić GV, Milosavljević MD, Veljković DŽ, Zarić SD (2017) Prediction of strong O–H/M hydrogen bonding between water and square-planar Ir and Rh complexes. PCCP 19:8657–8660

    Article  Google Scholar 

  • Jurecka P, Cerny J, Hobza P, Salahub DR (2007) Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J Comput Chem 28:555–569

    Article  CAS  Google Scholar 

  • Karmakar R, Choudhury CR, Mitra S, Dahlenburg L (2005) One novel Cu(II)–amino acid Schiff base complex derived from salicylaldehyde and l-serine: identification of unusual monodentate 4,4′-bipyridine. Struct Chem 16:611–616

    Article  CAS  Google Scholar 

  • Krámos B, Kovács A (2008) Metal–ligand interactions in Fe(II)-dioxime complex. J Mol Struct TEOCHEM 867:1–4

    Article  Google Scholar 

  • Lee C, Parr RG, Yang W (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  • Lee C, Sosa C, Planas M, Novoa JJ (1996) A theoretical study of the ionic dissociation of HF, HCl, and H2S in water clusters. J Chem Phys 104:7081–7085

    Article  CAS  Google Scholar 

  • Manoussakis G, Bolos C, Ecateriniadou L, Sarris C (1987) Synthesis, characterization and anti-bacterial studies of mixed-ligand complexes of dithiocarbamato—thiocyanato and iron(III), nickel(II), copper(II) and zinc(II). Eur J Med Chem 22(5):421–425

    Article  CAS  Google Scholar 

  • Mirzaei M, Eshtiagh-Hosseini H, Chahkandi M, Alfi N, Shokrollahi A, Shokrollahi N, Janiak A (2012) Comprehensive studies of non-covalent interactions within four new Cu(II) Supramolecules. CrystEngComm 14:8468–8484

    Article  CAS  Google Scholar 

  • Mondal N, Dey DK, Mitra S, Abdul Malik KM (2000) Synthesis and structural characterization of mixed ligand η1-2-hydroxyacetophenone complexes of cobalt(III). Polyhedron 19:2707–2711

    Article  CAS  Google Scholar 

  • Mooibroek TJ, Gamez P, Reedijk J (2008) Lone pair–π interactions: a new supramolecular bond? CrystEngComm 10:1501–1515

    Article  CAS  Google Scholar 

  • Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101:1629–1659

    Article  CAS  Google Scholar 

  • Naeimi H, Moradian M (2013) Encapsulation of copper(I)-Schiff base complex in NaY nanoporosity: an efficient and reusable catalyst in the synthesis of propargylamines via A3-coupling (aldehyde-amine-alkyne) reactions. Appl Catal A 467:400–406

    Article  CAS  Google Scholar 

  • Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, part A and B, 5th edn. John Wiley, New York

    Google Scholar 

  • Otieno T, Gipson AM, Parkin S (2002) Synthesis and X-ray characterization of a polymeric 1:3 complex of copper(II) nitrate with pyrazine. J Chem Crystallogr 32:81–85

    Article  CAS  Google Scholar 

  • Peterson M, Wanger F, Hufnagel L, Scheffler M, Blaha P, Schwarz K (2000) First-principles study of the optical properties of SrHfO3. Compute Phys Commun 126:294–309

    Article  Google Scholar 

  • Rao S, Mishra DD, Mourya RV, Nageswara N (1999) Oxovanadium binuclear (IV) Schiff base complexes derived from aroyl hydrazones having subnormal magnetic moments. Polyhedron 16:1825–1829

    Article  Google Scholar 

  • Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063

    Article  CAS  Google Scholar 

  • Sena EB, Kurup MRP (2007) Spectral and structural studies of mono- and binuclear copper(II) complexes of salicylaldehyde N(4)-substituted thiosemicarbazones. Polyhedron 26:829–836

    Article  Google Scholar 

  • Seth KS, Saha I, Estarellas C, Frontera A, Kar T, Mukhopadhyay S (2011) Supramolecular self-assembly of M-IDA complexes involving lone-pair···π interactions: crystal structures, Hirshfeld surface analysis, and DFT calculations [H2IDA = iminodiacetic acid, M=Cu(II), Ni(II)]. Cryst Growth Des 11:3250–3265

    Article  CAS  Google Scholar 

  • Shit S, Dey SK, Rizzoli C, Zangrando E, Pilet G, Gomez-Garcia CJ, Mitra S (2011) The key role of hydrogen bonding in the nuclearity of three copper(II) complexes with hydrazone-derived ligands and nitrogen donor heterocycles. Inorg Chim Acta 370:18–26

    Article  CAS  Google Scholar 

  • Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  • Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074

    Article  CAS  Google Scholar 

  • Tanoury GJ (1084) Chemoselective intermolecular hydrogen bonding in peptides: an electronic and topological study on the H-bonding selectivities in peptidomimetic HCV protease inhibitor telaprevir. Comput Theor Chem 2016:140–149

    Google Scholar 

  • Tiekink ER, Vittal JJ (2005) Frontiers in crystal engineering. Wiley, Chichester

    Book  Google Scholar 

  • Xiao B, Hou H, Fan Y, Tang M (2007) Impact of counteranion on the self-assembly of Cd(II)-containing MOFs: syntheses, structures and photoluminescent properties. Inorg Chim Acta 360:3019–3025 (and references therein)

    Article  CAS  Google Scholar 

  • Yang G, H-G. B.-H. Zhu and X.-M. L. Chen (2001) Syntheses and crystal structures of four metal–organic co-ordination networks constructed from cadmium(II) thiocyanate and nicotinic acid derivatives with hydrogen bonds. J Chem Soc Dalton Trans 580–85

  • Yeşilel OZ, Mutlu A, Büyükgüngör O (2009) Novel dinuclear and polynuclear copper(II) pyrazine-2,3-dicarboxylate supramolecular complexes with 1,3-propanediamine, N, N, N′, N′-tetramethylethylenediamine and 2,2′-bipyridine. Polyhedron 28:437–444

    Article  Google Scholar 

  • Yunus U, Ahmed S, Chahkandi M, Bhatti MH, Nawaz Tahir M (2016) Synthesis and theoretical studies of non-covalent interactions within a newly synthesized chiral 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine. J Mol Struct 1130:688–698

    Article  Google Scholar 

  • Zhang J-S, Liu H-C, Shi F, Yu F, Lan Q, Liu Y, Xiao C (1064) Adsorption and dissociation of H2O on the Ga-rich GaAs(001) − (4 × 2) surface: DFT and DFT-D computations with a Ga7As8H11 cluster model. Comput Theor Chem 2015:51–55

    Google Scholar 

  • Zhao H, Chang J, Du L (1084) Effect of hydrogen bonding on the spectroscopic properties of molecular complexes with aromatic rings as acceptors. Comput Theor Chem 2016:126–132

    Google Scholar 

  • Zhao H, Chang J, Du L (2016) Effect of hydrogen bonding on the spectroscopic properties of molecular complexes with aromatic rings as acceptors. Comput Theor Chem 1084:126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MCH and HARA gratefully acknowledge the financial support by the Hakim Sabzevari University, Sabzevar, Iran. Prof. P. Blaha, Vienna University of Technology, Austria, is appreciated for his technical help in the use of Wien2k package.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Chahkandi or H. A. Rahnamaye Aliabad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahkandi, M., Rahnamaye Aliabad, H.A. Role of hydrogen bonding in establishment of a crystalline network of Cu (II) complex with hydrazone-derived ligand: optoelectronic studies. Chem. Pap. 72, 1287–1297 (2018). https://doi.org/10.1007/s11696-017-0360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0360-z

Keywords

Navigation