Skip to main content
Log in

Long-Term Outcomes of Iron Deficiency Before and After Bariatric Surgery: a Systematic Review and Meta-analysis

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Purpose

This study reviews the prevalence of iron deficiency (ID) in bariatric surgery candidates and the long-term outcomes of the prevalence of ID after bariatric surgery.

Materials and Methods

A systematic literature search and meta-analysis were performed in PubMed for articles published by August 31, 2022, including these search terms: bariatric surgery, metabolic surgery, weight loss surgery, obesity surgery, sleeve gastrectomy, gastric banding, gastric bypass, duodenal switch, duodenojejunal bypass, iron, iron deficiency, sideropenia, and hypoferritinemia. Fifty-seven studies examining a total of 26,328 patients with morbidly obese were included in this meta-analysis finally.

Results

The results showed a prevalence of 17% of ID in bariatric surgery candidates and a prevalence of 14%, 17%, 26%, 34%, 23%, 38%, and 23% of ID at 1-, 2-, 3-, 4-, 5-, 8-, and 10-year follow-up after bariatric surgery, respectively. Additionally, the results showed a prevalence of 15%, 19%, 35%, 38%, 29%, 30%, and 23% of ID at 1-, 2-, 3-, 4-, 5-, 8-, and 10-year follow-up after Roux-en-Y gastric bypass, respectively; a prevalence of 12%, 12%, 15%, 31%, and 17% of ID at 1-, 2-, 3-, 4-, and 5-year follow-up after sleeve gastrectomy, respectively; and a prevalence of 19% of ID at 1-year follow-up after anastomosis gastric bypass.

Conclusion

As a result, preoperative evaluation and correction of ID may lead to better outcomes for bariatric surgery candidates. ID is also common in patients after bariatric procedures, especially RYGB. Long-term, even lifelong, medical and nutritional monitoring and tailored interventions are critical.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

BPD/DS:

Biliopancreatic diversion with duodenal switch

Hep:

Hepcidin

ID:

Iron deficiency

OAGB:

One anastomosis gastric bypass

RYGB:

Roux-en-Y gastric bypass

SG:

Sleeve gastrectomy

GB:

Gastric banding

References

  1. Kontis V, Mathers CD, Bonita R, et al. Regional contributions of six preventable risk factors to achieving the 25 × 25 non-communicable disease mortality reduction target: a modelling study. Lancet Glob Health. 2015;3(12):e746–57.

    Article  PubMed  Google Scholar 

  2. Aminian A, Wilson R, Al-Kurd A, et al. Association of bariatric surgery with cancer risk and mortality in adults with obesity. JAMA. 2022;327(24):2423–33.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Asghari G, Khalaj A, Ghadimi M, et al. Prevalence of micronutrient deficiencies prior to bariatric surgery: Tehran Obesity Treatment Study (TOTS). Obes Surg. 2018;28(8):2465–72.

    Article  PubMed  Google Scholar 

  4. Antoniewicz A, Kalinowski P, Kotulecka KJ, et al. Nutritional deficiencies in patients after Roux-en-Y gastric bypass and sleeve gastrectomy during 12-month follow-up. Obes Surg. 2019;29(10):3277–84.

    Article  PubMed  Google Scholar 

  5. Ferraz ÁAB, Carvalho MRC, Siqueira LT, et al. Micronutrient deficiencies following bariatric surgery: a comparative analysis between sleeve gastrectomy and Roux-en-Y gastric bypass. Rev Col Bras Cir. 2018;45(6):e2016.

    PubMed  Google Scholar 

  6. Krzizek EC, Brix JM, Herz CT, et al. Prevalence of micronutrient deficiency in patients with morbid obesity before bariatric surgery. Obes Surg. 2018;28(3):643–8.

    Article  PubMed  Google Scholar 

  7. Benotti PN, Wood GC, Dove JT, et al. Iron deficiency is highly prevalent among candidates for metabolic surgery and may affect perioperative outcomes. Surg Obes Relat Dis. 2021;17(10):1692–9.

    Article  PubMed  Google Scholar 

  8. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.

    Article  CAS  PubMed  Google Scholar 

  9. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

    Article  PubMed  Google Scholar 

  11. Salgado Jr W, Modotti C, Nonino CB, et al. Anemia and iron deficiency before and after bariatric surgery. Surg Obes Relat Dis. 2014;10(1):49–54.

    Article  PubMed  Google Scholar 

  12. Al-Mutawa A, Al-Sabah S, Anderson AK, et al. Evaluation of nutritional status post laparoscopic sleeve gastrectomy-5-year outcomes. Obes Surg. 2018;28(6):1473–83.

    Article  PubMed  Google Scholar 

  13. Hegarty C, Breen C, Fearon NM, et al. Assessment of baseline rates of functional and absolute iron deficiency in bariatric surgery candidates: a retrospective study. Surg Obes Relat Dis. 2021;17(12):2009–14.

    Article  PubMed  Google Scholar 

  14. Antoine D, Li Z, Quilliot D, et al. Medium term post-bariatric surgery deficit of vitamin B12 is predicted by deficit at time of surgery. Clin Nutr. 2021;40(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  15. Lowry B, Hardy K, Vergis A. Iron deficiency in bariatric surgery patients: a single-centre experience over 5 years. Can J Surg. 2020;63(4):E365–e9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lombardo M, Franchi A, Biolcati Rinaldi R, et al. Long-term iron and vitamin B12 deficiency are present after bariatric surgery, despite the widespread use of supplements. Int J Environ Res Public Health. 2021;18(9)

  17. Sandvik J, Bjerkan KK, Græslie H, et al. Iron deficiency and anemia 10 years after Roux-en-Y gastric bypass for severe obesity. Front Endocrinol (Lausanne). 2021;12:679066.

    Article  PubMed  Google Scholar 

  18. Ben-Porat T, Weiss R, Sherf-Dagan S, et al. Nutritional deficiencies in patients with severe obesity before bariatric surgery: what should be the focus during the preoperative assessment? J Acad Nutr Diet. 2020;120(5):874–84.

    Article  PubMed  Google Scholar 

  19. Dong L, Suh H, Karantanis W, et al. Evaluation of micronutrient status post laparoscopic sleeve gastrectomy: an Australian Perspective. Obes Surg. 2021;31(3):1099–104.

    Article  PubMed  Google Scholar 

  20. Lee PC, Ganguly S, Dixon JB, et al. Nutritional deficiencies in severe obesity: a multiethnic Asian cohort. Obes Surg. 2019;29(1):166–71.

    Article  PubMed  Google Scholar 

  21. Shipton MJ, Johal NJ, Dutta N, et al. Haemoglobin and hematinic status before and after bariatric surgery over 4 years of follow-up. Obes Surg. 2021;31(2):682–93.

    Article  PubMed  Google Scholar 

  22. Souza NMM, Santos ACO, Santa-Cruz F, et al. Nutritional impact of bariatric surgery: a comparative study of Roux-en-Y gastric bypass and sleeve gastrectomy between patients from the public and private health systems. Rev Col Bras Cir. 2020;47:e20202404.

    Article  PubMed  Google Scholar 

  23. Careaga M, Moizé V, Flores L, et al. Inflammation and iron status in bariatric surgery candidates. Surg Obes Relat Dis. 2015;11(4):906–11.

    Article  PubMed  Google Scholar 

  24. Komaei I, Sarra F, Lazzara C, et al. One anastomosis gastric bypass-mini gastric bypass with tailored biliopancreatic limb length formula relative to small bowel length: preliminary results. Obes Surg. 2019;29(9):3062–70.

    Article  PubMed  Google Scholar 

  25. van de Laar A, Gerdes VEA, Huijgen R, et al. Interpretation of laboratory results after gastric bypass surgery: the effects of weight loss and time on 30 blood tests in a 5-year follow-up program. Surg Obes Relat Dis. 2021;17(2):319–28.

    Article  PubMed  Google Scholar 

  26. Wang C, Guan B, Yang W, et al. Prevalence of electrolyte and nutritional deficiencies in Chinese bariatric surgery candidates. Surg Obes Relat Dis. 2016;12(3):629–34.

    Article  PubMed  Google Scholar 

  27. Sandvik J, Hole T, Klöckner CA, et al. Intravenous iron treatment in the prevention of iron deficiency and anaemia after Roux-en-Y gastric bypass. Obes Surg. 2020;30(5):1745–52.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kunst I, Krebs M, Dreschl B, et al. Iron deficiency - not only a premenopausal topic after bariatric surgery? Obes Surg. 2021;31(7):3242–50.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Monaco-Ferreira DV, Leandro-Merhi VA. Status of iron metabolism 10 years after Roux-En-Y gastric bypass. Obes Surg. 2017;27(8):1993–9.

    Article  PubMed  Google Scholar 

  30. Monteiro AM, Fernandes V, Matta-Coelho C, et al. Iron deficiency and obesity - are we diagnosing with appropriate indicators? Acta Med Port. 2018;31(9):478–82.

    Article  CAS  PubMed  Google Scholar 

  31. Khanbhai M, Dubb S, Patel K, et al. The prevalence of iron deficiency anaemia in patients undergoing bariatric surgery. Obes Res Clin Pract. 2015;9(1):45–9.

    Article  CAS  PubMed  Google Scholar 

  32. Gowanlock Z, Lezhanska A, Conroy M, et al. Iron deficiency following bariatric surgery: a retrospective cohort study. Blood Adv. 2020;4(15):3639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arias PM, Domeniconi EA, García M, et al. Micronutrient deficiencies after Roux-en-Y gastric bypass: long-term results. Obes Surg. 2020;30(1):169–73.

    Article  PubMed  Google Scholar 

  34. Nergaard BJ, Leifsson BG, Hedenbro J, et al. Gastric bypass with long alimentary limb or long pancreato-biliary limb--long-term results on weight loss, resolution of co-morbidities and metabolic parameters. Obes Surg. 2014;24(10):1595–602.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kessler Y, Adelson D, Mardy-Tilbor L, et al. Nutritional status following one anastomosis gastric bypass. Clin Nutr. 2020;39(2):599–605.

    Article  PubMed  Google Scholar 

  36. Al-Mutawa A, Anderson AK, Alsabah S, et al. Nutritional status of bariatric surgery candidates. Nutrients. 2018;10(1)

  37. Pellegrini M, Rahimi F, Boschetti S, et al. Pre-operative micronutrient deficiencies in patients with severe obesity candidates for bariatric surgery. J Endocrinol Invest. 2021;44(7):1413–23.

    Article  CAS  PubMed  Google Scholar 

  38. Ben-Porat T, Elazary R, Goldenshluger A, et al. Nutritional deficiencies four years after laparoscopic sleeve gastrectomy-are supplements required for a lifetime? Surg Obes Relat Dis. 2017;13(7):1138–44.

    Article  PubMed  Google Scholar 

  39. Tan BC, Park YS, Won Y, et al. Preoperative nutritional deficiencies in bariatric surgery candidates in Korea. Obes Surg. 2021;31(6):2660–8.

    Article  PubMed  Google Scholar 

  40. Dalcanale L, Oliveira CP, Faintuch J, et al. Long-term nutritional outcome after gastric bypass. Obes Surg. 2010;20(2):181–7.

    Article  PubMed  Google Scholar 

  41. Flancbaum L, Belsley S, Drake V, et al. Preoperative nutritional status of patients undergoing Roux-en-Y gastric bypass for morbid obesity. J Gastrointest Surg. 2006;10(7):1033–7.

    Article  PubMed  Google Scholar 

  42. Aarts EO, Janssen IM, Berends FJ. The gastric sleeve: losing weight as fast as micronutrients? Obes Surg. 2011;21(2):207–11.

    Article  PubMed  Google Scholar 

  43. Sherf Dagan S, Keidar A, Raziel A, et al. Do bariatric patients follow dietary and lifestyle recommendations during the first postoperative year? Obes Surg. 2017;27(9):2258–71.

    Article  PubMed  Google Scholar 

  44. Mulita F, Lampropoulos C, Kehagias D, et al. Long-term nutritional deficiencies following sleeve gastrectomy: a 6-year single-centre retrospective study. Prz Menopauzalny. 2021;20(4):170–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Del Villar ME, Neme-Yunes Y, Clavellina-Gaytan D, et al. Anemia after Roux-en-Y gastric bypass. How feasible to eliminate the risk by proper supplementation? Obes Surg. 2015;25(1):80–4.

    Article  Google Scholar 

  46. Jain M, Tantia O, Goyal G, et al. Tailored one anastomosis gastric bypass - subgroup analysis of a randomised control trial based on bilio-pancreatic limb length with long-term results of 101 patients. J Minim Access Surg. 2022;18(2):264–72.

    Article  PubMed  Google Scholar 

  47. Strain GW, Torghabeh MH, Gagner M, et al. Nutrient status 9 years after biliopancreatic diversion with duodenal switch (BPD/DS): an observational study. Obes Surg. 2017;27(7):1709–18.

    Article  PubMed  Google Scholar 

  48. Vargas-Ruiz AG, Hernández-Rivera G, Herrera MF. Prevalence of iron, folate, and vitamin B12 deficiency anemia after laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2008;18(3):288–93.

    Article  PubMed  Google Scholar 

  49. Toh SY, Zarshenas N, Jorgensen J. Prevalence of nutrient deficiencies in bariatric patients. Nutrition. 2009;25(11-12):1150–6.

    Article  CAS  PubMed  Google Scholar 

  50. Lefebvre P, Letois F, Sultan A, et al. Nutrient deficiencies in patients with obesity considering bariatric surgery: a cross-sectional study. Surg Obes Relat Dis. 2014;10(3):540–6.

    Article  PubMed  Google Scholar 

  51. Hakeam HA, O'Regan PJ, Salem AM, et al. Impact of laparoscopic sleeve gastrectomy on iron indices: 1 year follow-up. Obes Surg. 2009;19(11):1491–6.

    Article  PubMed  Google Scholar 

  52. Madan AK, Orth WS, Tichansky DS, et al. Vitamin and trace mineral levels after laparoscopic gastric bypass. Obes Surg. 2006;16(5):603–6.

    Article  PubMed  Google Scholar 

  53. Zarshenas N, Nacher M, Loi KW, et al. Investigating nutritional deficiencies in a group of patients 3 years post laparoscopic sleeve gastrectomy. Obes Surg. 2016;26(12):2936–43.

    Article  PubMed  Google Scholar 

  54. Darabi S, Talebpour M, Zeinoddini A, et al. Laparoscopic gastric plication versus mini-gastric bypass surgery in the treatment of morbid obesity: a randomized clinical trial. Surg Obes Relat Dis. 2013;9(6):914–9.

    Article  PubMed  Google Scholar 

  55. Mercachita T, Santos Z, Limão J, et al. Anthropometric evaluation and micronutrients intake in patients submitted to laparoscopic Roux-en-Y gastric bypass with a postoperative period of ≥ 1 year. Obes Surg. 2014;24(1):102–8.

    Article  PubMed  Google Scholar 

  56. Damms-Machado A, Friedrich A, Kramer KM, et al. Pre- and postoperative nutritional deficiencies in obese patients undergoing laparoscopic sleeve gastrectomy. Obes Surg. 2012;22(6):881–9.

    Article  PubMed  Google Scholar 

  57. Dogan K, Aarts EO, Koehestanie P, et al. Optimization of vitamin suppletion after Roux-en-Y gastric bypass surgery can lower postoperative deficiencies: a randomized controlled trial. Medicine (Baltimore). 2014;93(25):e169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Obinwanne KM, Fredrickson KA, Mathiason MA, et al. Incidence, treatment, and outcomes of iron deficiency after laparoscopic Roux-en-Y gastric bypass: a 10-year analysis. J Am Coll Surg. 2014;218(2):246–52.

    Article  PubMed  Google Scholar 

  59. Ledoux S, Calabrese D, Bogard C, et al. Long-term evolution of nutritional deficiencies after gastric bypass: an assessment according to compliance to medical care. Ann Surg. 2014;259(6):1104–10.

    Article  PubMed  Google Scholar 

  60. Engebretsen KV, Blom-Høgestøl IK, Hewitt S, et al. Anemia following Roux-en-Y gastric bypass for morbid obesity; a 5-year follow-up study. Scand J Gastroenterol. 2018;53(8):917–22.

    Article  CAS  PubMed  Google Scholar 

  61. Silva RA, Malta FM, Correia MF, et al. Serum vitamin B12, iron and folic acid deficiencies in obese individuals submitted to different bariatric techniques. Arq Bras Cir Dig. 2016;29(Suppl 1):62–6.

    Article  PubMed Central  Google Scholar 

  62. Aarts EO, van Wageningen B, Janssen IM, et al. Prevalence of anemia and related deficiencies in the first year following laparoscopic gastric bypass for morbid obesity. J Obes. 2012;2012:193705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pizza F, Lucido FS, D'Antonio D, et al. Biliopancreatic limb length in one anastomosis gastric bypass: which is the best? Obes Surg. 2020;30(10):3685–94.

    Article  PubMed  Google Scholar 

  64. Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med. 2020;75:100864.

    Article  CAS  PubMed  Google Scholar 

  65. González-Domínguez Á, Visiedo-García FM, Domínguez-Riscart J, et al. Iron metabolism in obesity and metabolic syndrome. Int J Mol Sci. 2020;21(15)

  66. Yueying C, Yu Fan W, Jun S. Anemia and iron deficiency in Crohn’s disease. Expert Rev Gastroenterol Hepatol. 2020;14(3):155–62.

    Article  PubMed  Google Scholar 

  67. Sonnweber T, Ress C, Nairz M, et al. High-fat diet causes iron deficiency via hepcidin-independent reduction of duodenal iron absorption. J Nutr Biochem. 2012;23(12):1600–8.

    Article  CAS  PubMed  Google Scholar 

  68. Sanad M, Osman M, Gharib A. Obesity modulate serum hepcidin and treatment outcome of iron deficiency anemia in children: a case control study. Ital J Pediatr. 2011;37:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mujica-Coopman MF, Brito A, López de Romaña D, et al. Body mass index, iron absorption and iron status in childbearing age women. J Trace Elem Med Biol. 2015;30:215–9.

    Article  CAS  PubMed  Google Scholar 

  70. Flynn AC, Begum S, White SL, et al. Relationships between maternal obesity and maternal and neonatal iron status. Nutrients. 2018;10(8)

  71. Zimmermann MB, Zeder C, Muthayya S, et al. Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification. Int J Obes (Lond). 2008;32(7):1098–104.

    Article  CAS  PubMed  Google Scholar 

  72. Bjørklund G, Peana M, Pivina L, et al. Iron deficiency in obesity and after bariatric surgery. Biomolecules. 2021;11(5)

  73. Kanamori Y, Murakami M, Sugiyama M, et al. Hepcidin and IL-1β. Vitam Horm. 2019;110:143–56.

    Article  CAS  PubMed  Google Scholar 

  74. McClung JP, Karl JP. Iron deficiency and obesity: the contribution of inflammation and diminished iron absorption. Nutr Rev. 2009;67(2):100–4.

    Article  PubMed  Google Scholar 

  75. Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018;10(4)

  76. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. J Arch Med Sci: AMS. 2017;13(4):851–63.

    Article  CAS  Google Scholar 

  77. Amato A, Santoro N, Calabrò P, et al. Effect of body mass index reduction on serum hepcidin levels and iron status in obese children. Int J Obes (Lond). 2010;34(12):1772–4.

    Article  CAS  PubMed  Google Scholar 

  78. Gong L, Yuan F, Teng J, et al. Weight loss, inflammatory markers, and improvements of iron status in overweight and obese children. J Pediatr. 2014;164(4):795–800.e2.

    Article  CAS  PubMed  Google Scholar 

  79. Arterburn DE, Telem DA, Kushner RF, et al. Benefits and risks of bariatric surgery in adults: a review. JAMA. 2020;324(9):879–87.

    Article  PubMed  Google Scholar 

  80. Kwon Y, Ha J, Lee YH, et al. Comparative risk of anemia and related micronutrient deficiencies after Roux-en-Y gastric bypass and sleeve gastrectomy in patients with obesity: an updated meta-analysis of randomized controlled trials. Obes Rev. 2022;23(4):e13419.

    Article  CAS  PubMed  Google Scholar 

  81. Welbourn R, Hollyman M, Kinsman R, et al. Bariatric surgery worldwide: baseline demographic description and one-year outcomes from the fourth IFSO Global Registry Report 2018. Obes Surg. 2019;29(3):782–95.

    Article  PubMed  Google Scholar 

  82. Gu L, Fu R, Chen P, et al. In terms of nutrition, the most suitable method for bariatric surgery: laparoscopic sleeve gastrectomy or Roux-en-Y gastric bypass? A systematic review and Meta-analysis. Obes Surg. 2020;30(5):2003–14.

    Article  PubMed  Google Scholar 

  83. Enani G, Bilgic E, Lebedeva E, et al. The incidence of iron deficiency anemia post-Roux-en-Y gastric bypass and sleeve gastrectomy: a systematic review. Surg Endosc. 2020;34(7):3002–10.

    Article  PubMed  Google Scholar 

  84. Cepeda-Lopez AC, Allende-Labastida J, Melse-Boonstra A, et al. The effects of fat loss after bariatric surgery on inflammation, serum hepcidin, and iron absorption: a prospective 6-mo iron stable isotope study. Am J Clin Nutr. 2016;104(4):1030–8.

    Article  CAS  PubMed  Google Scholar 

  85. O'Kane M, Parretti HM, Pinkney J, et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery-2020 update. Obes Rev. 2020;21(11):e13087.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mechanick JI, Apovian C, Brethauer S, et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures - 2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic and Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Obesity (Silver Spring). 2020;28(4):O1–o58.

    Article  PubMed  Google Scholar 

  87. Heber D, Greenway FL, Kaplan LM, et al. Endocrine and nutritional management of the post-bariatric surgery patient: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2010;95(11):4823–43.

    Article  CAS  PubMed  Google Scholar 

  88. DeFilipp Z, Lister J, Gagné D, et al. Intravenous iron replacement for persistent iron deficiency anemia after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2013;9(1):129–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoming Liang.

Ethics declarations

Ethical Approval Statement

For this type of study formal consent is not required.

Informed Consent Statement

Informed consent does not apply.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

1. Iron deficiency is common in bariatric surgery candidates; preoperative evaluation and correction of iron deficiency may lead to better outcomes for patients.

2. Iron deficiency may be found after any type of bariatric surgery, especially RYGB.

3. Long-term, even lifelong, medical and nutritional monitoring and tailored interventions are critical for patients after bariatric surgery.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Xiao, T., Hu, S. et al. Long-Term Outcomes of Iron Deficiency Before and After Bariatric Surgery: a Systematic Review and Meta-analysis. OBES SURG 33, 897–910 (2023). https://doi.org/10.1007/s11695-023-06465-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-023-06465-x

Keywords

Navigation