Skip to main content
Log in

A Systematic Review of Genetic Correlates of Weight Loss After Bariatric Surgery

  • Review
  • Published:
Obesity Surgery Aims and scope

Abstract

This systematic review synthesized research evaluating the relationship between genetic predictors and weight loss after bariatric surgery. Fifty-seven studies were identified that examined single genes or genetic risk scores. Uncoupling protein (UCP) rs660339 was associated with excess weight loss after surgery in 4 of 6 studies. The most commonly assessed genes were fat mass and obesity–associated (FTO) gene (n = 10) and melanocortin-4 receptor (MC4R) (n = 14). Both were inconsistently related to weight loss. Genetic risk scores predicted weight loss in 6 of 7 studies. This evidence suggests the potential of using genetic variants and genetic risk scores to predict the amount of weight loss anticipated after bariatric surgery and identify patients who may be at risk for suboptimal weight reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Chang S-H, Stoll CR, Song J, et al. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg. 2014;149(3):275–87.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Courcoulas AP, King WC, Belle SH, et al. Seven-year weight trajectories and health outcomes in the Longitudinal Assessment of Bariatric Surgery (LABS) study. JAMA Surg. 2018;153(5):427–34.

    Article  PubMed  Google Scholar 

  3. Sjöström L, Narbro K, Sjöström CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.

    Article  PubMed  Google Scholar 

  4. Karlsson J, Taft C, Ryden A, et al. Ten-year trends in health-related quality of life after surgical and conventional treatment for severe obesity: the SOS intervention study. Int J Obes. 2007;31(8):1248–61.

    Article  CAS  Google Scholar 

  5. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997;27(4):325–51.

    Article  CAS  PubMed  Google Scholar 

  6. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heianza Y, Qi L. Gene-diet interaction and precision nutrition in obesity. Int J Mol Sci. 2017 Apr 7;18(4):787.

    Article  PubMed Central  CAS  Google Scholar 

  9. Bayer S, Winkler V, Hauner H, et al. Associations between genotype–diet interactions and weight loss—a systematic review. Nutrients. 2020;12(9):2891.

    Article  CAS  PubMed Central  Google Scholar 

  10. Xiang L, Wu H, Pan A, et al. FTO genotype and weight loss in diet and lifestyle interventions: a systematic review and meta-analysis. Am J Clin Nutr. 2016;103(4):1162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martínez JA, Milagro FI. Genetics of weight loss: a basis for personalized obesity management. Trends Food Sci Technol. 2015;42(2):97–115.

    Article  CAS  Google Scholar 

  12. Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 2018;6(3):223–36.

    Article  CAS  PubMed  Google Scholar 

  13. Page MJ, McKenzie JE, Bossuyt PM, et al. Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol. 2021;134:103–12.

    Article  PubMed  Google Scholar 

  14. Sohani ZN, Meyre D, de Souza RJ, et al. Assessing the quality of published genetic association studies in meta-analyses: the quality of genetic studies (Q-Genie) tool. BMC Genet. 2015;16(1):1–8.

    Article  Google Scholar 

  15. Bandstein M, Schultes B, Ernst B, et al. The role of FTO and vitamin D for the weight loss effect of Roux-en-Y gastric bypass surgery in obese patients. Obes Surg. 2015;25(11):2071–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liou T-H, Chen H-H, Wang W, et al. ESR1, FTO, and UCP2 genes interact with bariatric surgery affecting weight loss and glycemic control in severely obese patients. Obes Surg. 2011;21(11):1758–65.

    Article  PubMed  Google Scholar 

  17. de Luis DA, Aller R, Conde R, et al. Effects of RS9939609 gene variant in FTO gene on weight loss and cardiovascular risk factors after biliopancreatic diversion surgery. J Gastrointest Surg. 2012;16(6):1194–8.

    Article  PubMed  Google Scholar 

  18. Rodrigues GK, Resende CM, Durso DF, et al. A single FTO gene variant rs9939609 is associated with body weight evolution in a multiethnic extremely obese population that underwent bariatric surgery. Nutrition. 2015;31(11-12):1344–50.

    Article  CAS  PubMed  Google Scholar 

  19. Sarzynski M, Jacobson P, Rankinen T, et al. Associations of markers in 11 obesity candidate genes with maximal weight loss and weight regain in the SOS bariatric surgery cases. Int J Obes. 2011;35(5):676–83.

    Article  CAS  Google Scholar 

  20. Figueroa-Vega N, Jordán B, Pérez-Luque EL, et al. Effects of sleeve gastrectomy and rs9930506 FTO variants on angiopoietin/Tie-2 system in fat expansion and M1 macrophages recruitment in morbidly obese subjects. Endocrine. 2016;54(3):700–13.

    Article  CAS  PubMed  Google Scholar 

  21. Javanrouh N, Khalaj A, Guity K, et al. Presence of CC genotype for rs17773430 could affect the percentage of excess weight loss 1 year after bariatric surgery: Tehran Obesity Treatment Study (TOTS). Obes Surg. 2020;30(2):537–44.

    Article  PubMed  Google Scholar 

  22. Mirshahi UL, Still CD, Masker KK, et al. The MC4R (I251L) allele is associated with better metabolic status and more weight loss after gastric bypass surgery. J Clin Endocrinol Metab. 2011;96(12):E2088–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kops NL, Vivan MA, Horvath JD, et al. FABP2, LEPR223, LEP656, and FTO polymorphisms: effect on weight loss 2 years after bariatric surgery. Obes Surg. 2018;28(9):2705–11.

    Article  PubMed  Google Scholar 

  24. De Luis DA, Aller R, Sagrado MG, et al. Influence of Lys656asn polymorphism of leptin receptor gene on surgical results of biliopancreatic diversion. J Gastrointest Surg. 2010;14(5):899–903.

    Article  PubMed  Google Scholar 

  25. Chen H-H, Lee W-J, Wang W, et al. Ala55Val polymorphism on UCP2 gene predicts greater weight loss in morbidly obese patients undergoing gastric banding. Obes Surg. 2007;17(7):926–33.

    Article  PubMed  Google Scholar 

  26. Lee YC, Liew P-L, Lee W-J, et al. Prediction of successful weight reduction after laparoscopic adjustable gastric banding. Hepatogastroenterology. 2009;56(93):1222–6.

    CAS  PubMed  Google Scholar 

  27. Nicoletti CF, de Oliveira APR, Brochado MJF, et al. The Ala55Val and-866G> A polymorphisms of the UCP2 gene could be biomarkers for weight loss in patients who had Roux-en-Y gastric bypass. Nutrition. 2017;33:326–30.

    Article  CAS  PubMed  Google Scholar 

  28. Sesti G, Perego L, Cardellini M, et al. Impact of common polymorphisms in candidate genes for insulin resistance and obesity on weight loss of morbidly obese subjects after laparoscopic adjustable gastric banding and hypocaloric diet. J Clin Endocrinol Metab. 2005;90(9):5064–9.

    Article  CAS  PubMed  Google Scholar 

  29. Di Renzo L, Carbonelli MG, Bianchi A, et al. Impact of the− 174 G> C IL-6 polymorphism on bioelectrical parameters in obese subjects after laparoscopic adjustable gastric banding. J Obes. 2012;2012:1–7.

    Article  CAS  Google Scholar 

  30. Di Renzo L, Carbonelli M, Bianchi A, et al. Body composition changes after laparoscopic adjustable gastric banding: what is the role of− 174G> C interleukin-6 promoter gene polymorphism in the therapeutic strategy? Int J Obes. 2012;36(3):369–78.

    Article  CAS  Google Scholar 

  31. Vitolo E, Santini E, Seghieri M, et al. Heterozygosity for the rs696217 SNP in the preproghrelin gene predicts weight loss after bariatric surgery in severely obese individuals. Obes Surg. 2017;27(4):961–7.

    Article  PubMed  Google Scholar 

  32. Matzko ME, Argyropoulos G, Wood GC, et al. Association of ghrelin receptor promoter polymorphisms with weight loss following Roux-en-Y gastric bypass surgery. Obes Surg. 2012;22(5):783–90.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Velázquez-Fernández D, Mercado-Celis G, Flores-Morales J, et al. Analysis of gene candidate SNP and ancestral origin associated to obesity and postoperative weight loss in a cohort of obese patients undergoing RYGB. Obes Surg. 2017;27(6):1481–92.

    Article  PubMed  Google Scholar 

  34. Hartmann IB, Fries GR, Bücker J, et al. The FKBP5 polymorphism rs1360780 is associated with lower weight loss after bariatric surgery: 26 months of follow-up. Surg Obes Relat Dis. 2016;12(8):1554–60.

    Article  PubMed  Google Scholar 

  35. Peña E, Caixàs A, Arenas C, et al. Role of the FKBP5 polymorphism rs1360780, age, sex, and type of surgery in weight loss after bariatric surgery: a follow-up study. Surg Obes Relat Dis. 2020;16(4):581–9.

    Article  PubMed  Google Scholar 

  36. Rinella ES, Still C, Shao Y, et al. Genome-wide association of single-nucleotide polymorphisms with weight loss outcomes after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab. 2013;98(6):E1131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ciudin A, Fidilio E, Ortiz A, et al. Genetic testing to predict weight loss and diabetes remission and long-term sustainability after bariatric surgery: a pilot study. J Clin Med. 2019;8(7):964.

    Article  CAS  PubMed Central  Google Scholar 

  38. de Toro-Martin J, Guenard F, Tchernof A, et al. Polygenic risk score for predicting weight loss after bariatric surgery. JCI Insight. 2018;6:3(17).

    Google Scholar 

  39. Aasbrenn M, Schnurr TM, Have CT, et al. Genetic determinants of weight loss after bariatric surgery. Obes Surg. 2019;29(8):2554–61.

    Article  PubMed  Google Scholar 

  40. Katsareli E, Amerikanou C, Rouskas K, et al. A genetic risk score for the estimation of weight loss after bariatric surgery. Obes Surg. 2020;30(4):1482–90.

    Article  CAS  PubMed  Google Scholar 

  41. Nicoletti CF, Pinhel MAS, de Oliveira BAP, et al. The genetic predisposition score of seven obesity-related single nucleotide polymorphisms is associated with better metabolic outcomes after Roux-en-Y gastric bypass. J Nutrigenet Nutrigenomics. 2016;9(5-6):222–30.

    CAS  PubMed  Google Scholar 

  42. Käkelä P, Jääskeläinen T, Torpström J, et al. Genetic risk score does not predict the outcome of obesity surgery. Obes Surg. 2014;24(1):128–33.

    Article  PubMed  Google Scholar 

  43. Scott F, Elahi S, Adebibe M, et al. Farnesoid X receptor-a molecular predictor of weight loss after vertical sleeve gastrectomy? Obes Sci Pract. 2019;5(3):273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Balasar Ö, Çakır T, Erkal Ö, et al. The effect of rs9939609 FTO gene polymorphism on weight loss after laparoscopic sleeve gastrectomy. Surg Endosc. 2016;30(1):121–5.

    Article  PubMed  Google Scholar 

  45. Novais PFS, Weber TK, Lemke N, et al. Gene polymorphisms as a predictor of body weight loss after Roux-en-Y gastric bypass surgery among obese women. Obes Res Clin Pract. 2016;10(6):724–7.

    Article  PubMed  Google Scholar 

  46. Wang C-Y, Liu K-H, Tsai M-L, et al. FTO variants are associated with ANGPTL4 abundances and correlated with body weight reduction after bariatric surgery. Obes Res Clin Pract. 2020;14(3):257–63.

    Article  PubMed  Google Scholar 

  47. Cooiman M, Kleinendorst L, Aarts E, et al. Genetic obesity and bariatric surgery outcome in 1014 patients with morbid obesity. Obes Surg. 2020;30(2):470–7.

    Article  CAS  PubMed  Google Scholar 

  48. Potoczna N, Branson R, Kral JG, et al. Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. J Gastrointest Surg. 2004;8(8):971–82.

    Article  PubMed  Google Scholar 

  49. Resende CMM, Durso DF, Borges KBG, et al. The polymorphism rs17782313 near MC4R gene is related with anthropometric changes in women submitted to bariatric surgery over 60 months. Clin Nutr. 2018;37(4):1286–92.

    Article  CAS  PubMed  Google Scholar 

  50. Aslan IR, Campos GM, Calton MA, et al. Weight loss after Roux-en-Y gastric bypass in obese patients heterozygous for MC4R mutations. Obes Surg. 2011;21(7):930–4.

    Article  PubMed  Google Scholar 

  51. Censani M, Conroy R, Deng L, et al. Weight loss after bariatric surgery in morbidly obese adolescents with MC4R mutations. Obesity (Silver Spring). 2014;22(1):225–31.

    Article  CAS  Google Scholar 

  52. Hatoum IJ, Stylopoulos N, Vanhoose AM, et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J Clin Endocrinol Metab. 2012;97(6):E1023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moore BS, Mirshahi UL, Yost EA, et al. Long-term weight-loss in gastric bypass patients carrying melanocortin 4 receptor variants. PLoS One. 2014;9(4):e93629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Valette M, Poitou C, Le Beyec J, et al. Melanocortin-4 receptor mutations and polymorphisms do not affect weight loss after bariatric surgery. PLoS One. 2012;7(11):e48221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zechner JF, Mirshahi UL, Satapati S, et al. Weight-independent effects of roux-en-Y gastric bypass on glucose homeostasis via melanocortin-4 receptors in mice and humans. Gastroenterology. 2013;144(3):580–590. e587.

    Article  CAS  PubMed  Google Scholar 

  56. De Luis D, Pacheco D, Aller R, et al. Influence of-55CT polymorphism of UCP3 gene on surgical results of biliopancreatic diversion. Obes Surg. 2010;20(7):895–9.

    Article  PubMed  Google Scholar 

  57. de Luis DA, Sagrado MG, Izaola O, et al. Influence of Ala54Thr polymorphism of fatty acid–binding protein-2 on clinical results of biliopancreatic diversion. Nutrition. 2008;24(4):300–4.

    Article  PubMed  CAS  Google Scholar 

  58. Hulsmans M, Geeraert B, De Keyzer D, et al. Interleukin-1 receptor-associated kinase-3 is a key inhibitor of inflammation in obesity and metabolic syndrome. PLoS One. 2012;7(1):e30414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Luis D, Pacheco D, Aller R, et al. Influence of G308A polymorphism of tumor necrosis factor alpha gene on surgical results of biliopancreatic diversion. Obes Surg. 2010;20(2):221–5.

    Article  PubMed  Google Scholar 

  60. Alexandrou A, Armeni E, Kaparos G, et al. Bsm1 vitamin D receptor polymorphism and calcium homeostasis following bariatric surgery. J Investig Surg. 2015;28(1):8–17.

    Article  Google Scholar 

  61. Hatoum IJ, Greenawalt DM, Cotsapas C, et al. Weight loss after gastric bypass is associated with a variant at 15q26. 1. Am J Hum Genet. 2013;92(5):827–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beisani M, Pappa S, Moreno P, et al. Laparoscopic sleeve gastrectomy induces molecular changes in peripheral white blood cells. Clin Nutr. 2020;39(2):592–8.

    Article  PubMed  Google Scholar 

  63. Poitou C, Lacorte J-M, Coupaye M, et al. Relationship between single nucleotide polymorphisms in leptin, IL6 and adiponectin genes and their circulating product in morbidly obese subjects before and after gastric banding surgery. Obes Surg. 2005;15(1):11–23.

    Article  PubMed  Google Scholar 

  64. Rasmussen-Torvik LJ, Baldridge AS, Pacheco JA, et al. rs4771122 predicts multiple measures of long-term weight loss after bariatric surgery. Obes Surg. 2015;25(11):2225–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bandstein M, Mwinyi J, Ernst B, et al. A genetic variant in proximity to the gene LYPLAL1 is associated with lower hunger feelings and increased weight loss following Roux-en-Y gastric bypass surgery. Scand J Gastroenterol. 2016;51(9):1050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Luis D, Sagrado MG, Pacheco D, et al. Effects of C358A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase on weight loss and cardiovascular risk factors 1 year after biliopancreatic diversion surgery. Surg Obes Relat Dis. 2010;6(5):516–20.

    Article  PubMed  Google Scholar 

  67. Leyvraz C, Verdumo C, Suter M, et al. Changes in gene expression profile in human subcutaneous adipose tissue during significant weight loss. Obes Facts. 2012;5(3):440–51.

    Article  PubMed  Google Scholar 

  68. Ruiz-Lozano T, Vidal J, De Hollanda A, et al. Evening chronotype associates with obesity in severely obese subjects: interaction with CLOCK 3111T/C. Int J Obes. 2016;40(10):1550–7.

    Article  CAS  Google Scholar 

  69. Potoczna N, Wertli M, Steffen R, et al. G protein polymorphisms do not predict weight loss and improvement of hypertension in severely obese patients. J Gastrointest Surg. 2004;8(7):862–8.

    Article  PubMed  Google Scholar 

  70. Goergen M, Manzoni D, De Blasi V, et al. Influence of obesity-susceptibility loci (MC4R and INSIG2) on the outcome of weight loss and amelioration of co-morbidity in obese patients treated by a gastric-bypass. Bull Soc Sci Med Grand Duche Luxemb. 2011;2:7–24.

    Google Scholar 

  71. de Luis D, Calvo SG, Primo D, et al. Polymorphism rs3123554 in the cannabinoid receptor type 2 (CB2R) gene is associated with metabolic changes after biliopancreatic diversion surgery. Endocrinol Diabetes Nutr (Engl Ed). 2019;66(3):157–63.

    Google Scholar 

  72. Scuteri A, Sanna S, Chen W-M, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3(7):e115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Alalwan AA, Friedman J, Park H, et al. US national trends in bariatric surgery: a decade of study. Surgery. 2021;170:13–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariana M. Chao.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Does not apply.

Conflict of Interest

Ariana M. Chao reports grants and consulting fees from WW International, Inc., outside the submitted work. Thomas A. Wadden discloses serving on advisory boards for Novo Nordisk and WW International, Inc. Robert I. Berkowitz reports receiving funding through grant support from Eisai Inc and Novo Nordisk and scientific consulting fees from WW International. The other authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• FTO and MC4R are inconsistently related to weight loss after bariatric surgery.

Genetic risk scores may be useful to predict the amount of weight loss after surgery.

• UCP was associated with excess weight loss after surgery in multiple studies.

Supplementary Information

ESM 1

(DOC 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.R., Zhou, Y., Wadden, T.A. et al. A Systematic Review of Genetic Correlates of Weight Loss After Bariatric Surgery. OBES SURG 31, 4612–4623 (2021). https://doi.org/10.1007/s11695-021-05585-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-021-05585-6

Keywords

Navigation