Skip to main content

Advertisement

Log in

A Prospective Randomized Controlled Trial of the Metabolic Effects of Sleeve Gastrectomy with Transit Bipartition

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Purpose

To compare the effects of the sleeve gastrectomy with transit bipartition (SG + TB) procedure with standard medical therapy (SMT) in mildly obese patients with type II diabetes (T2D).

Methods

This is a prospective, randomized, controlled trial. Twenty male adults, ≤ 65 years old, with T2D, body mass index (BMI) > 28 kg/m2 and < 35 kg/m2, and HbA1c level > 8% were randomized to SG + TB or to SMT. Outcomes were the remission in the metabolic and cardiovascular risk variables up to 24 months.

Results

At 24 months, SG + TB group showed a significant decrease in HbaA1c values (9.3 ± 2.1 versus 5.5 ± 1.1%, P = < 0.05) whereas SMT group maintained similar levels from baseline (8.0 ± 1.5 versus 8.3 ± 1.1%, P = NS). BMI values were lower in the SG + TB group (25.3 ± 2.8 kg/m2 versus 30.9 ± 2.5 kg/m2; P = < 0.001). At 24 months, none patient in SG + TB group needed medications for hyperlipidemia/hypertension. HDL-cholesterol levels increased in the SG + TB group (33 ± 8 to 45 ± 15 mg/dL, P < 0.001). After 24 months, the area under the curve (AUC) of GLP1 increased and in the SG + TB group and the AUC of the GIP concentrations was lower in the SG + TB group than in the SMT. At 3 months, SG + TB group showed a marked increase in FGF19 levels (74.1 ± 45.8 to 237.3 ± 234 pg/mL; P = 0.001).

Conclusions

SG + TB is superior to SMT and was associated with a better metabolic and cardiovascular profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307(1):56–65.

    Article  PubMed  Google Scholar 

  2. Mingrone G, Nolfe G, Gissey GC, et al. Circadian rhythms of GIP and GLP1 in glucose-tolerant and in type 2 diabetic patients after biliopancreatic diversion. Diabetologia. 2009;52(5):873–81.

    Article  PubMed  CAS  Google Scholar 

  3. Griffo E, Cotugno M, Nosso G, et al. Effects of sleeve gastrectomy and gastric bypass on postprandial lipid profile in obese type 2 diabetic patients: a 2-year follow-up. Obes Surg. 2016;26(6):1247–5.

  4. Hao Y, Zhou J, Zhou M, et al. Serum levels of fibroblast growth factor 19 are inversely associated with coronary artery disease in Chinese individuals. PLoS One. 2013;8(8):e72345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Jørgensen NB, Dirksen C, Bojsen-Møller KN, et al. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations. J Clin Endocrinol Metab. 2015;100(3):E396–406.

    Article  PubMed  CAS  Google Scholar 

  6. Santoro S, Castro LC, Velhote MCP, et al. Sleeve gastrectomy with transit bipartition. A potent intervention for metabolic syndrome and obesity. Ann Surg. 2012;256(1):104–10.

    Article  PubMed  Google Scholar 

  7. Santoro S. From bariatric to pure metabolic surgery: new concepts on the rise. Ann Surg. 2015;262:79–80.

    Article  Google Scholar 

  8. Milleo FQ, Campos ACL, Santoro S, et al. Metabolic effects of an entero-omentectomy in mildly obese type 2 diabetes mellitus patients after three years. Clinics. 2011;66(7):1227–33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Santoro S. Transit Bipartition 16. Youtube, 13 Mar. 2016. Available at: https://youtu.be/UGh0cssTwnY. Accessed in 26 Feb Mar. 18.

  10. Zhao TC. Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection. Cardiovasc Diabetol. 2013;12:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Christensen MB, Calanna S, Holst JJ, et al. Glucose-dependent Insulinotropic polypeptide: blood glucose stabilizing effects in patients with type 2 diabetes. J Clin Endocrinol Metab. 2014;99:E418–26.

    Article  PubMed  CAS  Google Scholar 

  12. Daousi C, Wilding JP, Holst JJ, et al. Glucose-dependent insulinotropic polypeptide promotes lipid deposition in subcutaneous adipocytes in obese type 2 diabetes patients: a maladaptive response. Am J Physiol Endocrinol Metab. 2017;312(3):E224–33.

    Article  PubMed  Google Scholar 

  13. Hare KJ, Vilsboll T, Asmar M, et al. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes. 2010;59:1765–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tolhurst G, Reimann F, Gribble FM. Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol. 2009;587(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  15. Verdich C, Flint A, Gutzwiller JP, et al. A meta-analysis of the effect of glucagon-likepeptide-1(7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab. 2001;86(9):4382–9.

    PubMed  CAS  Google Scholar 

  16. Meier JJ, Gethmann A, Götze O, et al. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia. 2006;49(3):452–8.

    Article  PubMed  CAS  Google Scholar 

  17. Potthoff MJ, Boney-Montoya J, Choi M, et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab. 2011;13(6):729–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tomlinson E, Fu L, John L, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143(5):1741–7.

    Article  PubMed  CAS  Google Scholar 

  19. Chennamsetty I, Claudel T, Kostner KM, et al. FGF19 signaling cascade suppresses APOA gene expression. Arterioscler Thromb Vasc Biol. 2012;32(5):1220–7.

    Article  PubMed  CAS  Google Scholar 

  20. Gerhard GS, Styer AM, Wood GC, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after roux-en-Y gastric bypass. Diabetes Care. 2013;36(7):1859–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sachdev S, Wang Q, Billigton C, et al. FGF 19 and bile acids increase following roux-en-Y gastric bypass but not after medical management in patients with type 2 diabetes. Obes Surg. 2016;26(5):957–65.

  22. Kashyap SR et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes. Diabetes Care. 2013;36(8):2175–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. H B, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56.

    Article  Google Scholar 

  24. Yormaz S, Yılmaz H, Ece I, et al. Laparoscopic Ileal interposition with diverted sleeve gastrectomy versus laparoscopic transit bipartition with sleeve gastrectomy for better glycemic outcomes in T2DM patients. Obes Surg. 2017;28:77–86. https://doi.org/10.1007/s11695-017-2803-6.

    Article  Google Scholar 

  25. Angrisani L, Santonicola A, Iovino P, et al. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes Surg. 2017;27:2279–89. https://doi.org/10.1007/s11695-017-2666-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lebel S, Dion G, Marceau S, et al. Clinical outcomes of duodenal switch with a 200-cm common channel: a matched, controlled trial. Surg Obes Relat Dis. 2016;12(5):1014–20.

    Article  PubMed  Google Scholar 

  27. Pufztner A et al. Intact and total proinsulin: new aspects for diagnosis and treatment of type 2 diabetes mellitus and insulin resistance. Clin Lab. 2004;50(9–10):567–73.

    Google Scholar 

  28. Mingrone G, Panunzi S, De Caetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.

    Article  PubMed  CAS  Google Scholar 

  29. Leonetti F, Capoccia D, Coccia F, et al. Obesity, type 2 diabetes mellitus, and other comorbidities: a prospective cohort study of laparoscopic sleeve gastrectomy vs medical treatment. Arch Surg. 2012;147(8):694–700.

    Article  PubMed  CAS  Google Scholar 

  30. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes--3-year outcomes. N Engl J Med. 2014;370(21):2002–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Caramelli.

Ethics declarations

The study was approved by the Institutional Ethics Committee (CAPPesq 0355/11) and registered with ClinicalTrials.gov (NCT01581099).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Daniel Giannella-Neto Deceased

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevedo, F.R., Santoro, S., Correa-Giannella, M.L. et al. A Prospective Randomized Controlled Trial of the Metabolic Effects of Sleeve Gastrectomy with Transit Bipartition. OBES SURG 28, 3012–3019 (2018). https://doi.org/10.1007/s11695-018-3239-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-018-3239-3

Keywords

Navigation