Skip to main content

Advertisement

Log in

The Role of the Vagal Nucleus Tractus Solitarius in the Therapeutic Effects of Obesity Surgery and Other Interventional Therapies on Type 2 Diabetes

  • Review Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

The current treatment for obesity-related type 2 diabetes is not able to achieve sufficient metabolic control. New remission prospects have been offered through bariatric surgery and other interventional therapies. The aim of the study is to illustrate the mechanism by which such therapies affect the autonomic system, in particular the afferent vagal activity. The first and most important terminal of this activity is the brainstem vagal nucleus tractus solitarius. Its function, on which the vagal efferent inputs that control the splanchnic organs depend, is conditioned by the level of synaptic transmission within it. In conclusion, on the basis of such a view, a selective pharmacological modulation of such transmission as the target for future medical treatment of obesity and related type 2 diabetes is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309(21):2240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sjöström L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304.

    Article  PubMed  CAS  Google Scholar 

  3. Scott JD, Johnson BL, Blackhurst DW, et al. Does bariatric surgery reduce the risk of major cardiovascular events? A retrospective cohort study of morbidly obese surgical patients. Surg Obes Relat Dis. 2013;9(1):32–9.

    Article  PubMed  Google Scholar 

  4. Salinari S, Bertuzzi A, Asnaghi S, et al. First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric surgery. Diabetes Care. 2009;32(3):375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Côté CD, Zadeh-Tahmasebi M, Rasmussen BA, et al. Hormonal signaling in the gut. J Biol Chem. 2014;289(17):11642–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Canales BK, Gonzalez RD. Kidney stone risk following Roux-en-Y gastric bypass surgery. Transl Urol Androl. 2014;3(3):242–9.

    Google Scholar 

  7. Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2(2):152–64.

    Article  CAS  PubMed  Google Scholar 

  8. Tack J, Deloose E. Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. Best Pract Res Clin Gastroenterol. 2014;28(4):741–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes. 2013;37(5):625–33.

    Article  CAS  Google Scholar 

  10. Stefater MA, Wilson-Pérez HE, Chambers AP, et al. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev. 2012;33(4):595–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am J Physiol Regul Integr Comp Physiol. 2014;307(11):R1275–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blasi C. Can diabetes heal?—from observations to perspectives. Curr Diabetes Rev. 2016;12(3):184–98.

    Article  PubMed  Google Scholar 

  13. Berthoud HR, Zheng H, Shin AC. Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery. Ann N Y Acad Sci. 2012;1264:36–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bach EC, Halmos KC, Smith BN. Enhanced NMDA receptor-mediated modulation of excitatory neurotransmission in the dorsal vagal complex of streptozotocin-treated, chronically hyperglycemic mice. PLoS One. 2015;10(3):e0121022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhao K, Ao Y, Harper RM, et al. Food-intake dysregulation in type 2 diabetic goto-kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output. Neuroscience. 2013;247:43–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Browning KR, Travagli RA. Plasticity of vagal brainstem circuits in the control of gastrointestinal function. Auton Neurosci. 2011;161(1–2):6–13.

    Article  CAS  PubMed  Google Scholar 

  17. Powley TL. Vagal circuitry mediating cephalic-phase responses to food. Appetite. 2000;34(2):184–8.

    Article  CAS  PubMed  Google Scholar 

  18. Shin AC, Berthoud HR. Obesity surgery: happy with less or eternally hungry? Trends Endocrinol Metab. 2013;24(2):101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol. 2016;9.

  20. Thorens B, Larsen PJ. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care. 2004;7(4):471–8.

    Article  CAS  PubMed  Google Scholar 

  21. Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel. J Clin Invest. 2015;125(3):899–907.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bohórquez DV, Liddle RA. The gut connectome: making sense of what you eat. J Clin Invest. 2015;125(3):888–90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vermeulen W, De Man JG, Pelckmans PA, et al. Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol. 2014;20(4):1005–20.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rasoamanana R, Darcel N, Fromentin G, et al. Nutrient sensing and signaling by the gut. Proc Nutr Soc. 2012;71(4):446–55.

    Article  CAS  PubMed  Google Scholar 

  25. Punjabi M, Arnold M, Geary N, et al. Peripheral glucagon-like peptide-1 (GLP-1) and satiation. Physiol Behav. 2011;105(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hayes MR, Kanoski SE, De Jonghe BC, et al. The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1. Am J Physiol Regul Integr Comp Physiol. 2011;301(5):R1479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burcelin R. The gut-brain axis: a major glucoregulatory player. Diabetes Metab. 2010;36(Suppl 3):S54–8.

    Article  CAS  PubMed  Google Scholar 

  28. Covasa M. CCK- and leptin-induced vagal afferent activation: a model for organ-specific endocrine modulation of visceral sensory information. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1542–3.

    Article  CAS  PubMed  Google Scholar 

  29. Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. J Clin Invest. 2015;125(3):908–17.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ritter RC. A tale of two endings: modulation of satiation by NMDA receptors on or near central and peripheral vagal afferent terminals. Physiol Behav. 2011;105(1):94–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haines DE. Neuroanatomy. An atlas of structures, sections, and systems. Lippincott Williams & Wilkins; 2004.

  32. Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol. 2014;220(2):T25–46.

    Article  CAS  PubMed  Google Scholar 

  33. Browning KN, Fortna SR, Hajnal A. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones. J Physiol. 2013;591(9):2357–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen HS, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem. 2006;97(6):1611–26.

    Article  CAS  PubMed  Google Scholar 

  35. Browning KN, Babic T, Toti L, et al. Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor. J Physiol. 2014;592(20):4591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyer D, Bonhoeffer T, Scheuss V. Balance and stability of synaptic structures during synaptic plasticity. Neuron. 2014;82(2):430–43.

    Article  CAS  PubMed  Google Scholar 

  37. Gerrow K, Triller A. Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol. 2010;20(5):631–9.

    Article  CAS  PubMed  Google Scholar 

  38. Shouval HZ, Castellani GC, Blais BS, et al. Converging evidence for a simplified biophysical model of synaptic plasticity. Biol Cybern. 2002;87(5–6):383–91.

    Article  PubMed  Google Scholar 

  39. Wu SW, Fenwick AJ, Peters JH. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons. Physiol Behav. 2014;136:179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130(4S Suppl):1007S–15S.

    CAS  PubMed  Google Scholar 

  41. Baude A, Strube C, Tell F, et al. Glutamatergic neurotransmission in the nucleus tractus solitary: structural and functional characteristics. J Chem Neuroanat. 2009;38(3):145–53.

    Article  CAS  PubMed  Google Scholar 

  42. Gao H, Smith BN. Tonic GABAA receptor-mediated inhibition in the rat dorsal motor nucleus of the vagus. J Neurophysiol. 2010;103(2):904–14.

    Article  CAS  PubMed  Google Scholar 

  43. Davis SF, Derbenev AV, Williams KW, et al. Excitatory and inhibitory local circuit input to the rat dorsal motor nucleus of the vagus originating from the nucleus tractus solitarius. Brain Res. 2004;1017(1–2):208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Travagli RA, Rogers RC. Receptors and transmission in the brain-gut axis: potential for novel therapies. V. Fast and slow extrinsic modulation of dorsal vagal complex circuits. Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G595–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Broussard DL, Altschuler SM. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med. 2000;108(Suppl 4a):79S–86S.

    Article  PubMed  Google Scholar 

  46. Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4(4):1339–68.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Blake CB, Smith BN. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice. Am J Physiol Regul Integr Comp Physiol. 2014;307(6):R711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ballsmider LA, Vaughn AC, David M, et al. Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication. Neural Plast. 2015;2015:601985.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kentish SJ, Page AJ. The role of gastrointestinal vagal afferent fibres in obesity. J Physiol. 2015;593(4):775–86.

    Article  CAS  PubMed  Google Scholar 

  50. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex-linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Daly DM, Park SJ, Valinsky WC, et al. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J Physiol. 2011;589(PT 11):2857–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dockray GJ. Gastrointestinal hormones and the dialogue between gut and brain. J Physiol. 2014;592(14):2927–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Lartigue G, Ronveaux CC, Raybould HE. Vagal plasticity the key to obesity. Molecular Metabolism. 2014;3(9):855–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Furnes MW, Zhao CM, Chen D. Development of obesity is associated with increased calories per meal rather than per day. A study of high-fat diet-induced obesity in young rats. Obes Surg. 2009;19(10):1430–8.

    Article  PubMed  Google Scholar 

  55. Dockray GJ, Burdyga G. Plasticity in vagal afferent neurons during feeding and fasting: mechanisms and significance. Acta Physiol (Oxf). 2011;201(3):313–21.

    Article  CAS  Google Scholar 

  56. Page AJ. Vagal afferent dysfunction in obesity: cause or effect. J Physiol. 2016;594(1):5–6.

    Article  CAS  PubMed  Google Scholar 

  57. Kral JG, Paez W, Wolfe BM. Vagal nerve function in obesity: therapeutic implications. World J Surg. 2009;33(10):1995–2006.

    Article  PubMed  Google Scholar 

  58. Stearns AT, Balakrishnan A, Radmanesh A, et al. Relative contributions of afferent vagal fibers to resistance to diet-induced obesity. Dig Dis Sci. 2012;57(5):1281–90.

    Article  CAS  PubMed  Google Scholar 

  59. Leung FW. Capsaicin as an anti-obesity drug. Prog Drug Res. 2014;68:171–9.

    CAS  PubMed  Google Scholar 

  60. Westerterp-Plantenga MS, Smeets A, Lejeune MP. Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes. 2005;29(6):682–8.

    Article  CAS  Google Scholar 

  61. Faris PL, Kim SW, Meller WH, et al. Effect of decreasing afferent vagal activity with ondansetron on symptoms of bulimia nervosa: a randomised, double-blind trial. Lancet. 2000;355(9206):792–7.

    Article  CAS  PubMed  Google Scholar 

  62. Blackshaw LA, Grundy D. Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J Auton Nerv Syst. 1993;45(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  63. Kline DD. Plasticity in glutamatergic NTS neurotransmission. Respir Physiol Neurobiol. 2008;164(1–2):105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bonham AC, Chen CY, Sekizawa S, et al. Plasticity in the nucleus tractus solitarius and its influence on lung and airway reflexes. J Appl Physiol. 2006;101(1):322–7.

    Article  PubMed  Google Scholar 

  65. Val-Laillet D, Aarts E, Weber B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015;8:1–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Donovan MJ, Paulino G, Raybould HE. CCK(1) receptor is essential for normal meal patterning in mice fed high fat diet. Physiol Behav. 2007;92(5):969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Covasa M, Ritter RC. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol. 2000;278(1):R166–70.

    CAS  PubMed  Google Scholar 

  68. Zsombok A, Bhaskaran MD, Gao H, et al. Functional plasticity of central TRPV1 receptors in brainstem dorsal vagal complex circuits of streptozotocin-treated hyperglycemic mice. J Neurosci. 2011;31(39):14024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ricardo JA, Koh ET. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 1978;153(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  70. Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010;1350:18–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ter Horst GJ, de Boer P, Luiten PG, et al. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience. 1989;31(3):785–97.

    Article  CAS  PubMed  Google Scholar 

  72. Jean A. Le noyau du faisceau solitaire: aspects neuroanatomiques, neurochimiques et fonctionnels. Arch Int Physiol Bioch Biophys. 1991;99:A3–A52.

    CAS  Google Scholar 

  73. Van den Oever MC, Spijker S, Smit AB. The synaptic pathology of drug addiction. Adv Exp Med Biol. 2012;970:469–91.

    Article  CAS  PubMed  Google Scholar 

  74. Li F, Tsien JZ. Memory and the NMDA receptors. N Engl J Med. 2009;361(3):302–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gipson CD, Kupchik YM, Kalivas PW. Rapid, transient synaptic plasticity in addiction. Neuropharmacology. 2014;76 Pt B:276–86.

    Article  PubMed  CAS  Google Scholar 

  76. Kalivas PW, Volkow ND. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry. 2011;16(10):974–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peters JH, Gallaher ZR, et al. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. J Comp Neurol. 2013;521(15):3584–99.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gallaher ZR, Ryu V, Herzog T, et al. Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy. Neurosci Lett. 2012;513(1):31–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Andreelli F, Amouyal C, Magnan C, et al. What can bariatric surgery teach us about the pathophysiology of type 2 diabetes? Diabetes Metab. 2009;35(6 Pt 2):499–507.

    Article  CAS  PubMed  Google Scholar 

  80. Karim R, Chaudhri P. Behavioral addictions: an overview. J Psychoactive Drugs. 2012;44(1):5–17.

    Article  PubMed  Google Scholar 

  81. Sussman S, Lisha N, Griffiths M. Prevalence of the addictions: a problem of the majority or the minority? Eval Health Prof. 2011;34(1):3–56.

    Article  PubMed  Google Scholar 

  82. Pang ZP, Han W. Regulation of synaptic functions in central nervous system by endocrine hormones and the maintenance of energy homoeostasis. Biosci Rep. 2012;32(5):423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dunn JP, Cowan RL, Volkow ND, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Breen DM, Rasmussen BA, Côté CD, et al. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes. 2013;62(9):3005–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kullmann S, Heni M, Veit R, et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;38(6):1044–50.

    Article  CAS  PubMed  Google Scholar 

  86. Manning S, Pucci A, Batterham RL. Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms. J Clin Invest. 2015;125(3):939–48.

    Article  PubMed  PubMed Central  Google Scholar 

  87. le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246(5):780–5.

    Article  PubMed  Google Scholar 

  88. Larder R, O’Rahilly S. Shedding pounds after going under the knife: guts over glory-why diets fail. Nat Med. 2012;18(5):666–7.

    Article  CAS  PubMed  Google Scholar 

  89. Miras AD, le Roux CW. Mechanisms underlying weight loss after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2013;10(10):575–84.

    Article  PubMed  Google Scholar 

  90. Scott WR, Batterham RL. Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: understanding weight loss and improvements in type 2 diabetes after bariatric surgery. Am J Physiol Regul Integr Comp Physiol. 2011;301(1):R15–27.

    Article  CAS  PubMed  Google Scholar 

  91. Bueter M, Löwenstein C, Olbers T, et al. Gastric bypass increases energy expenditure in rats. Gastroenterology. 2010;138(5):1845–53.

    Article  PubMed  Google Scholar 

  92. Schultes B, Ernst B, Wilms B, et al. Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery. Am J Clin Nutr. 2010;92(2):277–83.

    Article  CAS  PubMed  Google Scholar 

  93. Flancbaum L, Choban PS, Bradley LR, et al. Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity. Surgery. 1997;122(5):943–9.

    Article  CAS  PubMed  Google Scholar 

  94. Delin CR, Watts JM, Saebel JL, et al. Eating behavior and the experience of hunger following gastric bypass surgery for morbid obesity. Obes Surg. 1997;7(5):405–13.

    Article  CAS  PubMed  Google Scholar 

  95. Chambers AP, Wilson-Perez HE, McGrath S, et al. Effect of vertical sleeve gastrectomy on food selection and satiation in rats. Am J Physiol Endocrinol Metab. 2012;303(8):E1076–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Steele KE, Prokopowicz GP, Schweitzer MA, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20(3):369–74.

    Article  PubMed  Google Scholar 

  97. Hao Z, Townsend RL, Mumphrey MB, et al. Vagal innervation of the intestine contributes to weight loss after Roux-e-Y gastric bypass surgery in rats. Obes Surg. 2014;24(12):2145–51.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gautron L, Zechner J, Aguirre V. Vagal innervation patterns following roux-en-Y gastric bypass in the mouse. Int J Obes. 2013;37(12):1603–7.

    Article  CAS  Google Scholar 

  99. Yamazaki H, Tsuboya T, Tsuji K, et al. Independent association between improvement of nonalcoholic fatty liver disease and reduced incidence of type 2 diabetes mellitus. Diabetes Care. 2015;38(9):1673–9.

    Article  CAS  PubMed  Google Scholar 

  100. Yki-Järvinen H. Liver fat in the pathogenesis of insulin resistance and type 2 diabetes. Dig Dis. 2010;28(1):203–9.

    Article  PubMed  CAS  Google Scholar 

  101. Immonen H, Hannukainen JC, Iozzo P, et al. Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J Hepatol. 2014;60(2):377–83.

    Article  CAS  PubMed  Google Scholar 

  102. Quercia I, Dutia R, Kotler DP, et al. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014;40(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  103. He B, Piao D, Yu C, et al. Amelioration in hepatic insulin sensitivity by reduced hepatic lipid accumulation at short-term after Roux-en-Y gastric bypass surgery in type 2 diabetic rats. Obes Surg. 2013;23(12):2033–41.

    Article  PubMed  Google Scholar 

  104. Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51(10):1781–9.

    Article  CAS  PubMed  Google Scholar 

  105. Yue JT, Abraham MA, LaPierre MP, et al. A fatty acid-dependent hypothalamic-DVC neurocircuitry that regulates hepatic secretion of triglyceride-rich lipoproteins. Nat Commun. 2015;6:5970.

    Article  CAS  PubMed  Google Scholar 

  106. Lam CK, Chari M, Rutter GA, et al. Hypothalamic nutrient sensing activates a forebrain-hindbrain neuronal circuit to regulate glucose production in vivo. Diabetes. 2011;60(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  107. Cohen R, le Roux CW, Papamargaritis D, et al. Role of proximal gut exclusion from food on glucose homeostasis in patients with type 2 diabetes. Diabet Med. 2013;30(12):1482–6.

    Article  CAS  PubMed  Google Scholar 

  108. de Jonge C, Rensen SS, Verdam FJ, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves type 2 diabetes. Obes Surg. 2013;23(9):1354–60.

    Article  PubMed  Google Scholar 

  109. Fractyl Labs. Positive clinical data for first procedural therapy to treat type 2 diabetes. In: Abstracts from the 19th world congress of the international federation for the surgery of obesity & metabolic disorders (IFSO). Obes Surg. 2014;24(8):1170.

    Google Scholar 

  110. Kamvissi V, Salerno A, Bornstein SR, et al. Incretins or anti-incretins? A new model for the “entero-pancreatic axis”. Horm Metab Res. 2015;47(1):84–7.

    CAS  PubMed  Google Scholar 

  111. Farré R, Tack J. Food and symptom generation in functional gastrointestinal disorders: physiological aspects. Am J Gastroenterol. 2013;108(5):698–706.

    Article  PubMed  Google Scholar 

  112. Berthoud HR, Kressel M, Raybould HE, et al. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat Embryol (Berl). 1995;191(3):203–12.

    Article  CAS  Google Scholar 

  113. Kressel M, Berthoud HR, Neuhuber WL. Vagal innervation of the rat pylorus: an anterograde tracing study using carbocyanine dyes and laser scanning confocal microscopy. Cell Tissue Res. 1994;275(1):109–23.

    Article  CAS  PubMed  Google Scholar 

  114. Holst JJ. Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery. Curr Opin Pharmacol. 2013;13(6):983–8.

    Article  CAS  PubMed  Google Scholar 

  115. Daniel EE, Wiebe GE. Transmission of reflexes arising on both sides of the gastroduodenal junction. Am J Phys. 1966;211(3):634–42.

    CAS  Google Scholar 

  116. Shikora S, Toouli J, Herrera MF, et al. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes. 2013;2013:245683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Val-Laillet D, Biraben A, Randuineau G, et al. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in obese adult minipigs. Appetite. 2010;55(2):245–52.

    Article  CAS  PubMed  Google Scholar 

  118. Smith DK, Sarfeh J, Howard L. Truncal vagotomy in hypothalamic obesity. Lancet. 1983;1(8337):1330–1.

    Article  CAS  PubMed  Google Scholar 

  119. Lebovitz HE, Ludvik B, Yaniv I, et al. Gutterman DD; Metacure Investigators. Treatment of patients with obese type 2 diabetes with Tantalus-DIAMOND® gastric electrical stimulation: normal triglycerides predict durable effects for at least 3 years. Horm Metab Res. 2015;47(6):456–62.

    Article  CAS  PubMed  Google Scholar 

  120. Peles S, Petersen J, Aviv R, et al. Enhancement of antral contractions and vagal afferent signaling with synchronized electrical stimulation. Am J Physiol Gastrointest Liver Physiol. 2003;285(3):G577–85.

    Article  CAS  PubMed  Google Scholar 

  121. Goldman JM, Wheeler MF. Remission of diabetes after irradiation of head and neck. Diabetes Care. 1987;10(1):137–8.

    Article  CAS  PubMed  Google Scholar 

  122. Raheja BS, Motwani BT, Mehta AR, et al. Remission of NIDDM after irradiation of metastatic cervical lymph nodes. Diabetes Care. 1986;9(1):101–3.

    Article  CAS  PubMed  Google Scholar 

  123. Rex D, Duckworth WC. Remission of overt diabetes mellitus after removal of an oral epidermoid carcinoma. Am J Med Sci. 1984;287(3):43–5.

    Article  CAS  PubMed  Google Scholar 

  124. Ricard D, Soussain C, Psimaras D. Neurotoxicity of the CNS: diagnosis, treatment and prevention. Rev Neurol (Paris). 2011;167(10):737–45.

    Article  CAS  Google Scholar 

  125. Hamilton RB, Norgren R. Central projections of gustatory nerves in the rat. J Comp Neurol. 1984;222(4):560–77.

    Article  CAS  PubMed  Google Scholar 

  126. Jang HJ, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A. 2007;104(38):15069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Torii K, Uneyama H, Nakamura E. Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption. J Gastroenterol. 2013;48(4):442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Niijima A. Effect of umami taste stimulations on vagal efferent activity in the rat. Brain Res Bull. 1991;27(3–4):393–6.

    Article  CAS  PubMed  Google Scholar 

  129. Schier LA, Davidson TL, Powley TL. Rapid stimulus-bound suppression of intake in response to an intraduodenal nonnutritive sweetener after training with nutritive sugars predicting malaise. Am J Physiol Regul Integr Comp Physiol. 2012;302(11):R1351–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Freeman AJ, Cunningham KT, Tyers MB. Selectivity of 5-HT3 antagonists and anti-emetic mechanisms of action. Anti-Cancer Drugs. 1992;3(2):79–85.

    Article  CAS  PubMed  Google Scholar 

  131. Wood PL. The NMDA receptor complex: a long and winding road to therapeutics. IDrugs. 2005;8(3):229–35.

    CAS  PubMed  Google Scholar 

  132. Vyklicky V, Korinek M, Smejkalova T, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(Suppl 1):S191–203.

    CAS  PubMed  Google Scholar 

  133. Tomek SE, LaCrosse AL, Nemirovsky NE, et al. NMDA receptor modulators in the treatment of drug addiction. Pharmaceuticals. 2013;6(2):251–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Professor Domenico Andreani, President of DEM Foundation, for his constant encouragement in the study of the subject of the present review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Blasi.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Informed Consent

Does not apply.

Human and Animal Rights

Does not apply.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasi, C. The Role of the Vagal Nucleus Tractus Solitarius in the Therapeutic Effects of Obesity Surgery and Other Interventional Therapies on Type 2 Diabetes. OBES SURG 26, 3045–3057 (2016). https://doi.org/10.1007/s11695-016-2419-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-016-2419-2

Keywords

Navigation