Skip to main content

Advertisement

Log in

Endoscopic Duodenal–Jejunal Bypass Liner Rapidly Improves Type 2 Diabetes

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Bariatric procedures excluding the proximal small intestine improve glycemic control in type 2 diabetes within days. To gain insight into the mediators involved, we investigated factors regulating glucose homeostasis in patients with type 2 diabetes treated with the novel endoscopic duodenal–jejunal bypass liner (DJBL).

Methods

Seventeen obese patients (BMI 30–50 kg/m2) with type 2 diabetes received the DJBL for 24 weeks. Body weight and type 2 diabetes parameters, including HbA1c and plasma levels of glucose, insulin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon, were analyzed after a standard meal before, during, and 1 week after DJBL treatment.

Results

At 24 weeks after implantation, patients had lost 12.7 ± 1.3 kg (p < 0.01), while HbA1c had improved from 8.4 ± 0.2 to 7.0 ± 0.2 % (p < 0.01). Both fasting glucose levels and the postprandial glucose response were decreased at 1 week after implantation and remained decreased at 24 weeks (baseline vs. week 1 vs. week 24: 11.6 ± 0.5 vs. 9.0 ± 0.5 vs. 8.6 ± 0.5 mmol/L and 1,999 ± 85 vs. 1,536 ± 51 vs. 1,538 ± 72 mmol/L/min, both p < 0.01). In parallel, the glucagon response decreased (23,762 ± 4,732 vs. 15,989 ± 3,193 vs. 13,1207 ± 1,946 pg/mL/min, p < 0.05) and the GLP-1 response increased (4,440 ± 249 vs. 6,407 ± 480 vs. 6,008 ± 429 pmol/L/min, p < 0.01). The GIP response was decreased at week 24 (baseline—115,272 ± 10,971 vs. week 24—88,499 ± 10,971 pg/mL/min, p < 0.05). Insulin levels did not change significantly. Glycemic control was still improved 1 week after explantation.

Conclusions

The data indicate DJBL to be a promising treatment for obesity and type 2 diabetes, causing rapid improvement of glycemic control paralleled by changes in gut hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–7.

    Article  PubMed  CAS  Google Scholar 

  2. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    Article  PubMed  Google Scholar 

  3. Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238(4):467–84.

    PubMed  Google Scholar 

  4. Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    Article  PubMed  Google Scholar 

  5. Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222(3):339–50.

    Article  PubMed  CAS  Google Scholar 

  6. Thaler JP, Cummings DE. Minireview: Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150(6):2518–25.

    Article  PubMed  CAS  Google Scholar 

  7. Laferrere B et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med. 2011;3(80):80re2.

    Article  PubMed  Google Scholar 

  8. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.

    Article  PubMed  Google Scholar 

  9. Knop FK. Resolution of type 2 diabetes following gastric bypass surgery: Involvement of gut-derived glucagon and glucagonotropic signalling? Diabetologia. 2009;52(11):2270–6.

    Article  PubMed  CAS  Google Scholar 

  10. Fetner R, McGinty J, Russell C, et al. Incretins, diabetes, and bariatric surgery: A review. Surg Obes Relat Dis. 2005;1(6):589–97.

    Article  PubMed  Google Scholar 

  11. Rao RS, Kini S. GIP and bariatric surgery. Obes Surg. 2011;21(2):244–52.

    Article  PubMed  Google Scholar 

  12. Bradley D, Magkos F, Klein S. Effects of bariatric surgery on glucose homeostasis and type 2 diabetes. Gastroenterology. 2012;143:897–912. doi:10.1053/j.gastro.2012.07.114.

    Article  PubMed  CAS  Google Scholar 

  13. Rodriguez-Grunert L, Galvao Neto MP, Alamo M, et al. First human experience with endoscopically delivered and retrieved duodenal–jejunal bypass sleeve. Surg Obes Relat Dis. 2008;4(1):55–9.

    Article  PubMed  Google Scholar 

  14. Tarnoff M, Rodriguez L, Escalona A, et al. Open label, prospective, randomized controlled trial of an endoscopic duodenal–jejunal bypass sleeve versus low calorie diet for pre-operative weight loss in bariatric surgery. Surg Endosc. 2009;23(3):650–6.

    Article  PubMed  CAS  Google Scholar 

  15. Gersin KS, Rothstein RI, Rosenthal RJ, et al. Open-label, sham-controlled trial of an endoscopic duodenojejunal bypass liner for preoperative weight loss in bariatric surgery candidates. Gastrointest Endosc. 2010;71(6):976–82.

    Article  PubMed  Google Scholar 

  16. Schouten R, Rijs CS, Bouvy ND, et al. A multicenter, randomized efficacy study of the EndoBarrier Gastrointestinal Liner for presurgical weight loss prior to bariatric surgery. Ann Surg. 2010;251(2):236–43.

    Article  PubMed  Google Scholar 

  17. de Moura EG, Martins BC, Lopes GS, et al. Metabolic improvements in obese type 2 diabetes subjects implanted for 1 year with an endoscopically deployed duodenal–jejunal bypass liner. Diabetes Technol Ther. 2012;14(2):183–9.

    Article  PubMed  Google Scholar 

  18. Escalona A, Pimentel F, Sharp A, et al. Weight loss and metabolic improvement in morbidly obese subjects implanted for 1 year with an endoscopic duodenal–jejunal bypass liner. Ann Surg. 2012;255(6):1080–5.

    Article  PubMed  Google Scholar 

  19. Goldfine AB, Shoelson SE, Aguirre V. Expansion and contraction: treating diabetes with bariatric surgery. Nat Med. 2009;15(6):616–7.

    Article  PubMed  CAS  Google Scholar 

  20. Kreymann B, Williams G, Ghatei MA, et al. Glucagon-like peptide-1 7–36: A physiological incretin in man. Lancet. 1987;2(8571):1300–4.

    Article  PubMed  CAS  Google Scholar 

  21. Menge BA, Gruber L, Jorgensen SM, et al. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes. Diabetes. 2011;60(8):2160–8.

    Article  PubMed  CAS  Google Scholar 

  22. Klein S, Fabbrini E, Patterson BW, et al. Moderate effect of duodenal–jejunal bypass surgery on glucose homeostasis in patients with type 2 diabetes. Obesity. 2012;20(6):1266–72.

    Article  PubMed  CAS  Google Scholar 

  23. Geloneze B, Geloneze SR, Fiori C, et al. Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal–jejunal exclusion. Obes Surg. 2009;19(8):1077–83.

    Article  PubMed  Google Scholar 

  24. Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359(9309):824–30.

    Article  PubMed  CAS  Google Scholar 

  25. Umeda LM, Silva EA, Carneiro G, et al. Early improvement in glycemic control after bariatric surgery and its relationships with insulin, GLP-1, and glucagon secretion in type 2 diabetic patients. Obes Surg. 2011;21(7):896–901.

    Article  PubMed  Google Scholar 

  26. Kelley DE, Wing R, Buonocore C, et al. Relative effects of calorie restriction and weight loss in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1993;77(5):1287–93.

    Article  PubMed  CAS  Google Scholar 

  27. Pournaras DJ, Osborne A, Hawkins SC, et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann Surg. 2010;252(6):966–71.

    Article  PubMed  Google Scholar 

  28. DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: Contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 1989;38(4):387–95.

    Article  PubMed  CAS  Google Scholar 

  29. Hare KJ, Knop FK, Asmar M, et al. Preserved inhibitory potency of GLP-1 on glucagon secretion in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(12):4679–87.

    Article  PubMed  CAS  Google Scholar 

  30. Yabe D, Seino Y. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and beta cell preservation. Prog Biophys Mol Biol. 2011;107(2):248–56.

    Article  PubMed  CAS  Google Scholar 

  31. Holst JJ, Christensen M, Lund A, et al. Regulation of glucagon secretion by incretins. Diabetes Obes Metab. 2011;13 Suppl 1:89–94.

    Article  PubMed  CAS  Google Scholar 

  32. Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23.

    Article  PubMed  CAS  Google Scholar 

  33. Buchwald H et al. Weight and type 2 diabetes after bariatric surgery: Systematic review and meta-analysis. Am J Med. 2009;122(3):248–56. e5.

    Article  PubMed  Google Scholar 

  34. Dixon JB, Zimmet P, Alberti KG, et al. Bariatric surgery for diabetes: The International Diabetes Federation takes a position. J Diabetes. 2011;3(4):261–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients contributing to this trial; the trial nurses, Y. Wils and R. Nelissen; the students who helped in conducting this research: G. Latten, N. Geubbels, M. de Wolf, T. van der Horst, R. Erbil, B. van der Putten, H. D’Agnolo, S. Peeters Weem, and M.A. Joosten; B. Winkens for statistical assistance; Dr. R.J. de Ridder, Dr. G.H. Koek, and Dr. C.M. Bakker for their help with the DJBL procedures; Prof. Dr. A.A. Masclee, Dr. J. Maljaars, and Y. Slaats for their help regarding the study design; and I.C. Arts and E. Theunisz for the Luminex analyses.

Conflict of Interest

N.D.B. received an open research grant from GI Dynamics. J.W.M.G. received an open research grant and support for travel to meetings for the study or other purposes from GI Dynamics. All other authors have no conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Willem M. Greve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jonge, C., Rensen, S.S., Verdam, F.J. et al. Endoscopic Duodenal–Jejunal Bypass Liner Rapidly Improves Type 2 Diabetes. OBES SURG 23, 1354–1360 (2013). https://doi.org/10.1007/s11695-013-0921-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-013-0921-3

Keywords

Navigation