Skip to main content
Log in

Design and development of a novel sensor for the detection of Atezolizumab as a liver cancer medicine in drinking water sources

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Because of the possible harm that drugs may cause to the environment and public health, the discovery of pharmaceuticals in drinking water sources has drawn increasing attention. Pharmaceuticals such as atezolizumab (ATZ), a monoclonal antibody used to treat liver cancer, can enter water sources through a number of different routes. The design and development of a new electrochemical sensor for the detection of ATZ in water sources are presented in this research study. Gold nanoparticles (Au NPs) and an anti-Atezolizumab antibody (Ab) on a glassy carbon electrode (GCE) were used to develop the immunosensor. Differential pulse voltammetry was used to comprehensively examine the immunosensor’s electrochemical characteristics. The immunosensor showed a broad concentration range of 0.001 to 2000 µg/mL and a low detection limit of 0.6 ng/mL. When the performance of the sensor was compared to other documented ATZ immunoassays, it demonstrated better performance because of its wide analytical range and low detection limit. The immunosensor’s repeatability and stability were assessed as well; results revealed a significant 40-day stability period and a relative standard deviation of 4.13%. The immunosensor’s distinct capacity to recognize ATZ validated its selectivity. Recovery experiments using human serum, urine, and drinking water samples were used to assess the immunosensor’s feasibility; the range of recoveries was 90.00 to 99.40%. The results showed a strong correlation with the ATZ ELISA Assay Kit that is sold commercially. All things considered, the creation of this unique electrochemical sensor marks a substantial breakthrough in the fields of drug detection and environmental monitoring. This sensor could be used to quickly and accurately identify ATZ in water sources, assisting in maintaining the security of our water supply and safeguarding public health and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.C. Plaz Torres, Q. Lai, F. Piscaglia, E. Caturelli, G. Cabibbo, E. Biasini, F. Pelizzaro, F. Marra, F. Trevisani, E.G. Giannini, Treatment of hepatocellular carcinoma with immune checkpoint inhibitors and applicability of first-line atezolizumab/bevacizumab in a real-life setting. J. Clin. Med. 10, 3201 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y. Xue, S. Gao, J. Gou, T. Yin, H. He, Y. Wang, Y. Zhang, X. Tang, R. Wu, Platinum-based chemotherapy in combination with PD-1/PD-L1 inhibitors: preclinical and clinical studies and mechanism of action, Expert opinion on drug delivery, 18 (2021) 187–203

  3. F. Zhang, X. Qi, X. Wang, D. Wei, J. Wu, L. Feng, H. Cai, Y. Wang, N. Zeng, T. Xu, Structural basis of the therapeutic anti-PD-L1 antibody atezolizumab. Oncotarget. 8, 90215 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  4. K. Du, H. Huang, Development of anti-PD-L1 antibody based on structure prediction of AlphaFold2. Front. Immunol. 14, 1 (2023)

    Article  Google Scholar 

  5. M.J. Davies, PD-1/PD-L1 inhibitors for non–small cell lung cancer: incorporating Care Step pathways for effective side-effect management. J. Adv. Practitioner Oncol. 10, 21 (2019)

    Google Scholar 

  6. S. Di Cosimo, Advancing immunotherapy for early-stage triple-negative breast cancer. Lancet. 396, 1046–1048 (2020)

    Article  PubMed  Google Scholar 

  7. X. Li, W. Ding, S. Wang, L. Yang, Q. Yu, C. Xiao, G. Chen, L. Zhang, S. Guan, D. Sun, Three-dimensional sulfated bacterial cellulose/gelatin composite scaffolds for culturing hepatocytes. Cyborg Bionic Syst. 4, 0021 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Babu, C. Chetty, S. Mastanamma, Stability indicating RP-HPLC method development and validation for the estimation of atezolizumab in bulk and its injectable dosage form. J. Pharm. Res. Int. 18, 1–9 (2017)

    Article  Google Scholar 

  9. J. Zou, C. Li, X. Zhang, T. Huang, N. Kehriman, W. Kuang, X. Hu, Y. Yan, X. Ling, Novel Electrochemical Biosensors for Investigating the Interactions between Atezolizumab and PD-1/PD-L1 and Screening Their small-molecular Inhibitors, vol. 10 (X, Biosensors and Bioelectronics, 2022), p. 100146

    Google Scholar 

  10. L. Neven, S.T. Shanmugam, V. Rahemi, S. Trashin, N. Sleegers, E.N. Carrión, S.M. Gorun, K. De Wael, Optimized photoelectrochemical detection of essential drugs bearing phenolic groups. Anal. Chem. 91, 9962–9969 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. J. Singh, A. Mehta, Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: a review. Food Sci. Nutr. 8, 2183–2204 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. Xu, H. Wang, W. Zhao, S. Fu, Y. Li, W. Ni, Y. Xin, W. Li, C. Yang, Y. Bai, SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating snail mRNA homeostasis in hepatocellular carcinoma. Theranostics. 10, 5671 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Z. Zhang, Y. Cong, Y. Huang, X. Du, Nanomaterials-based electrochemical immunosensors. Micromachines. 10, 397 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  14. R. Zumpano, F. Polli, C. D’Agostino, R. Antiochia, G. Favero, F. Mazzei, Nanostructure-based electrochemical immunosensors as diagnostic tools. Electrochem. 2, 10–28 (2021)

    Article  CAS  Google Scholar 

  15. Q. Zhao, S. Yan, B. Zhang, K. Fan, J. Zhang, W. Li, An on-chip viscoelasticity sensor for biological fluids. Cyborg Bionic Syst. 4, 0006 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. V. Naresh, N. Lee, A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 21, 1109 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. W. Hu, Y. Ma, Z. Zhan, D. Hussain, C. Hu, Robotic intracellular electrochemical sensing for adherent cells, Cyborg and Bionic Systems, 2022 (2022)

  18. G. Lu, L. Duan, S. Meng, P. Cai, S. Ding, X. Wang, Development of a colorimetric and turn-on fluorescent probe with large Stokes shift for H2S detection and its multiple applications in environmental, food analysis and biological imaging. Dyes Pigm. 220, 111687 (2023)

    Article  CAS  Google Scholar 

  19. C. Zhu, G. Yang, H. Li, D. Du, Y. Lin, Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87, 230–249 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. G. Sun, J. Lu, S. Ge, X. Song, J. Yu, M. Yan, J. Huang, Ultrasensitive electrochemical immunoassay for carcinoembryonic antigen based on three-dimensional macroporous gold nanoparticles/graphene composite platform and multienzyme functionalized nanoporous silver label. Anal. Chim. Acta. 775, 85–92 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. S.K. Vashist, E. Lam, S. Hrapovic, K.B. Male, J.H. Luong, Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem. Rev. 114, 11083–11130 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. P.B. Luppa, L.J. Sokoll, D.W. Chan, Immunosensors—principles and applications to clinical chemistry. Clin. Chim. Acta. 314, 1–26 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Y. Gao, I. Kyratzis, Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide—a critical assessment, in. ACS Publications, 2008, pp. 1945–1950

  24. R. Raghav, S. Srivastava, Core–shell gold–silver nanoparticles based impedimetric immunosensor for cancer antigen CA125. Sens. Actuators B 220, 557–564 (2015)

    Article  CAS  Google Scholar 

  25. Y. Lin, K. Liu, C. Wang, L. Li, Y. Liu, Electrochemical Immunosensor for detection of epidermal growth factor reaching lower detection limit: toward oxidized glutathione as a more efficient blocking reagent for the antibody functionalized silver nanoparticles and antigen interaction. Anal. Chem. 87, 8047–8051 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. J. Li, J. Wu, X. Zhang, Y. Liu, D. Zhou, H. Sun, H. Zhang, B. Yang, Controllable synthesis of stable urchin-like gold nanoparticles using hydroquinone to tune the reactivity of gold chloride. J. Phys. Chem. C 115, 3630–3637 (2011)

    Article  CAS  Google Scholar 

  27. M. Singh, R. Kalaivani, S. Manikandan, N. Sangeetha, A. Kumaraguru, Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl. Nanosci. 3, 145–151 (2013)

    Article  CAS  Google Scholar 

  28. I.I. Patel, J. Trevisan, P.B. Singh, C.M. Nicholson, R.G. Krishnan, S.S. Matanhelia, F.L. Martin, Segregation of human prostate tissues classified high-risk (UK) versus low-risk (India) for adenocarcinoma using Fourier-transform infrared or Raman microspectroscopy coupled with discriminant analysis, Analytical and bioanalytical chemistry, 401 (2011) 969–982

  29. G. Lu, S. Yu, L. Duan, S. Meng, S. Ding, T. Dong, New 1, 8-naphthalimide-based colorimetric fluorescent probe for specific detection of hydrazine and its multi-functional applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 305, 123450 (2024)

    Article  CAS  Google Scholar 

  30. L. Wang, X.-X. Gan, Biomolecule-functionalized magnetic nanoparticles for flow-through quartz crystal microbalance immunoassay of aflatoxin B 1, Bioprocess and biosystems engineering, 32 (2009) 109–116

  31. A.A. Menazea, E. Alzahrani, W. Alharbi, A.A. Shaltout, Bimetallic nanocomposite of Gold/Silver scattered in Chitosan via laser ablation for Electrical and Antibacterial utilization. J. Electron. Mater. 51, 3811–3819 (2022)

    Article  CAS  Google Scholar 

  32. L.M. Miller, M.W. Bourassa, R.J. Smith, FTIR spectroscopic imaging of protein aggregation in living cells, Biochimica et biophysica acta (BBA)-biomembranes, 1828 (2013) 2339–2346

  33. A. Sadat, I.J. Joye, Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Appl. Sci. 10, 5918 (2020)

    Article  CAS  Google Scholar 

  34. Z. Wang, R. Ma, B. Chen, X. Yu, X. Wang, X. Zuo, B. Liang, J. Yang, A transcription factor-based bacterial biosensor system and its application for on-site detection of explosives. Biosens. Bioelectron. 244, 115805 (2024)

    Article  CAS  PubMed  Google Scholar 

  35. T. Miyazawa, E. Blout, The infrared spectra of polypeptides in various conformations: Amide I and II bands1. J. Am. Chem. Soc. 83, 712–719 (1961)

    Article  CAS  Google Scholar 

  36. H. Wang, T. Yang, J. Wu, D. Chen, W. Wang, Unveiling the mystery of SUMO-activating enzyme subunit 1: A groundbreaking biomarker in the early detection and advancement of hepatocellular carcinoma, in: Transplantation Proceedings, Elsevier, 2023, pp. 945–951

  37. J. Narang, N. Malhotra, G. Singh, C. Pundir, Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface. Biosens. Bioelectron. 66, 332–337 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. T. Yu, B. Xu, M. Bao, Y. Gao, Q. Zhang, X. Zhang, R. Liu, Identification of potential biomarkers and pathways associated with carotid atherosclerotic plaques in type 2 diabetes mellitus: a transcriptomics study. Front. Endocrinol. 13, 981100 (2022)

    Article  Google Scholar 

  39. C. Lu, S. Luo, X. Wang, J. Li, Y. Li, Y. Shen, J. Wang, Illuminating the nanomaterials triggered signal amplification in electrochemiluminescence biosensors for food safety: mechanism and future perspectives. Coord. Chem. Rev. 501, 215571 (2024)

    Article  CAS  Google Scholar 

  40. E. Katz, I. Willner, Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis: Int. J. Devoted Fundamental Practical Aspects Electroanalysis. 15, 913–947 (2003)

    Article  CAS  Google Scholar 

  41. M. Findik, H. Bingol, A. Erdem, Hybrid nanoflowers modified pencil graphite electrodes developed for electrochemical monitoring of interaction between Mitomycin C and DNA, Talanta, 222 (2021) 121647

  42. Z. Guo, Y.-J. Wang, B.-S. He, J. Zhou, Linc00312 single nucleotide polymorphism as biomarker for chemoradiotherapy induced hematotoxicity in nasopharyngeal carcinoma patients, Disease Markers, 2022 (2022)

  43. D. Kim, S. Lee, Y. Piao, Electrochemical determination of dopamine and acetaminophen using activated graphene-nafion modified glassy carbon electrode. J. Electroanal. Chem. 794, 221–228 (2017)

    Article  CAS  Google Scholar 

  44. Z. Lu, J. Zhang, W. Dai, X. Lin, J. Ye, J. Ye, A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of zn (II), pb (II) and Cu (II). Microchim. Acta. 184, 4731–4740 (2017)

    Article  CAS  Google Scholar 

  45. J. Lu, S. Liu, S. Ge, M. Yan, J. Yu, X. Hu, Ultrasensitive electrochemical immunosensor based on au nanoparticles dotted carbon nanotube–graphene composite and functionalized mesoporous materials. Biosens. Bioelectron. 33, 29–35 (2012)

    Article  PubMed  Google Scholar 

  46. M. Pan, Y. Gu, Y. Yun, M. Li, X. Jin, S. Wang, Nanomaterials for electrochemical immunosensing. Sensors. 17, 1041 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  47. E.B. Aydın, M. Aydın, M.K. Sezgintürk, A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples. Biosens. Bioelectron. 97, 169–176 (2017)

    Article  PubMed  Google Scholar 

  48. M. Ekinci, H. Akbaba, R. Santos-Oliveira, D. Ilem-Ozdemir, Development and validation of UV/VIS spectroscopy method for determination of atezolizumab in pharmaceutical products. EXPERIMENTAL BIOMEDICAL Res. 5, 175–182 (2022)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng cheng Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C.j., Lv, Y.s., Chen, Z.l. et al. Design and development of a novel sensor for the detection of Atezolizumab as a liver cancer medicine in drinking water sources. Food Measure (2024). https://doi.org/10.1007/s11694-024-02576-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02576-w

Keywords

Navigation