Skip to main content
Log in

Encapsulation of avocado oil with modified rice starch: thermal and functional properties and gastrointestinal release

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Encapsulation is a well-established technology that provides thermal stability and enables controlled release of functional compounds, such as avocado oil (AO). In this study, AO was encapsulated through the spray-drying process at inlet (130 °C) and outlet (80 °C) temperatures using different ratios (2.5–12.5%) of enzymatically modified red rice starch (RRS) as the coating material, with α-amylase and amyloglucosidase. The results demonstrated that emulsions with higher concentrations of modified RRS (10% and 12.5%) exhibited higher zeta potential values (− 37.67 mV and − 38.01 mV), indicating greater stability. For all conditions, the process yield was above 49%, and encapsulation efficiency (EE) ranged from 70.51 to 91.36%. AO microcapsules (5.72–8.15 µm) also showed low water content (3.29–5.58%) and high solubility (66.18–81.55%), enhancing their applicability in various processes. Additionally, AO microcapsules produced with 10% modified RRS (RRS4) exhibited the highest levels of phenolic compounds (5.74 mg GAE/100 g) and antioxidant activity (0.29–0.61 µM Trolox/g). Significant variations (p < 0.05) in thermal properties resulting from different concentrations of modified RRS contributed to higher thermal stability of microcapsules, with greater mass loss (59.01–63.37%) in the temperature range of 160–400 °C. According to in vitro release studies, the microcapsules released AO in simulated salivary fluid, continuing in gastric and intestinal fluids. It is concluded that suitable concentrations of modified RRS (10%, RRS4) provided the best techno-functional properties and higher release rates during digestion simulation, offering promising perspectives for innovative solutions in the functional food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. N.C. Santos, R.L.J. Almeida, E.W.V. de Andrade, M. de Fátima Dantas de Medeiros, M.R. Da Silva Pedrini, Effects of drying conditions and ethanol pretreatment on the techno-functional and morpho-structural properties of avocado powder produced by foam-mat drying. J. Food Meas. Charact. 17, 3149–3161 (2023). https://doi.org/10.1007/s11694-023-01857-0

    Article  Google Scholar 

  2. C.O. Nyakangi, R. Ebere, E. Marete, J.M. Arimi, Avocado production in Kenya in relation to the world, Avocado by-products (seeds and peels) functionality and utilization in food products. Appl. Food Res. (2023). https://doi.org/10.1016/j.afres.2023.100275

    Article  Google Scholar 

  3. N.A. Ford, P. Spagnuolo, J. Kraft, E. Bauer, Nutritional composition of Hass avocado pulp. Foods 12(13), 2516 (2023). https://doi.org/10.3390/foods12132516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S.D. Posta, V. Gallo, A.M. Ascrizzi, A. Gentili, L. De Gara, L. Dugo, C. Fanali, Development of a green ultrasound-assisted procedure for the extraction of phenolic compounds from avocado peel with deep eutectic solvents. Green Anal. Chem. (2023). https://doi.org/10.1016/j.greeac.2023.100083

    Article  Google Scholar 

  5. H.S. Green, S.C. Wang, Purity and quality of private labelled avocado oil. Food Control 152, 109837 (2023). https://doi.org/10.1016/j.foodcont.2023.109837

    Article  CAS  Google Scholar 

  6. S.T. Mgoma, M. Basitere, V.V. Mshayisa, Kinetics and thermodynamics of oil extraction from South African Hass avocados using hexane as a solvent. S. Afr. J. Chem. Eng. 37, 244–251 (2021). https://doi.org/10.1016/j.sajce.2021.06.007

    Article  Google Scholar 

  7. Y. King-Loeza, D.A. Ciprián-Macías, A. Cardador-Martínez, S.T. Martín-del-Campo, M.C. Castañeda-Saucedo, J. del Pilar Ramírez-Anaya, Functional composition of avocado (Persea americana Mill Var Hass) pulp, extra virgin oil, and residues is affected by fruit commercial classification. J. Agric. Food Res. 12, 100573 (2023). https://doi.org/10.1016/j.jafr.2023.100573

    Article  CAS  Google Scholar 

  8. N.A. Hashim, M.F.A.M. Norzi, Z.I.M. Arshad, N.A.M. Azman, S.K.A. Mudalip, Effect of spray drying parameters on the physicochemical properties and oxidative stability of oil from menhaden (Brevoortia spp.) and Asian swamp eel (Monopterus albus) oil extract microcapsules. Food Chem. Adv. 3, 100392 (2023). https://doi.org/10.1016/j.focha.2023.100392

    Article  Google Scholar 

  9. A. Elik, D.K. Yanık, F. Göğüş, A comparative study of encapsulation of carotenoid enriched-flaxseed oil and flaxseed oil by spray freeze-drying and spray drying techniques. LWT 143, 111153 (2021). https://doi.org/10.1016/j.lwt.2021.111153

    Article  CAS  Google Scholar 

  10. D.M. Yaman, D. Koçak Yanık, A. Elik Demir, H. Uzun Karka, G. Güçlü, S. Selli, F. Göğüş, Effect of encapsulation techniques on aroma retention of Pistacia terebinthus L. fruit oil: spray drying, spray freeze drying, and freeze drying. Foods 12(17), 3244 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P.A. Gimenez, A. Lucini Mas, P.D. Ribotta, M.L. Martínez, A. González, Chia oil microencapsulation using tannic acid and soy protein isolate as wall materials. Foods 12(20), 3833 (2023). https://doi.org/10.3390/foods12203833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Rojas-Moreno, F. Cárdenas-Bailón, G. Osorio-Revilla, T. Gallardo-Velázquez, J. Proal-Nájera, Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil. J. Food Meas. Charact. 12, 650–660 (2018). https://doi.org/10.1007/s11694-017-9678-z

    Article  Google Scholar 

  13. I.K. Sani, M. Alizadeh Khaledabad, S. Pirsa, E. Moghaddas Kia, Physico-chemical, organoleptic, antioxidative and release characteristics of flavoured yoghurt enriched with microencapsulated Melissa officinalis essential oil. Int. J. Dairy Technol. 73(3), 542–551 (2020). https://doi.org/10.1111/1471-0307.12691

    Article  CAS  Google Scholar 

  14. R.L.J. Almeida, N.S. Rios, E.S. Dos Santos, Modification of red rice starch by a combination of hydrothermal pretreatments and α-amylase hydrolysis. Carbohydr. Polym. 296, 119963 (2022). https://doi.org/10.1016/j.carbpol.2022.119963

    Article  CAS  PubMed  Google Scholar 

  15. M. Santamaria, R. Garzon, C.M. Rosell, Impact of starch–hydrocolloid interaction on pasting properties and enzymatic hydrolysis. Food Hydrocoll. 142, 108764 (2023). https://doi.org/10.1016/j.foodhyd.2023.108764

    Article  CAS  Google Scholar 

  16. R.L.J. Almeida, N.C. Santos, C.E.S. Muniz, R. da Silva Eduardo, R. de Almeida Silva, C.A.C. Ribeiro, E.S. Dos Santos, Red rice starch modification-combination of the non-thermal method with a pulsed electric field (PEF) and enzymatic method using α-amylase. Int. J. Biol. Macromol. (2023). https://doi.org/10.1016/j.ijbiomac.2023.127030

    Article  PubMed  Google Scholar 

  17. L.G. Cardoso, I.J.B. Junior, R.V. da Silva, J. Mossmann, C.O. Reinehr, V.B. Brião, L.M. Colla, Processed cheese with inulin and microencapsulated chia oil (Salvia hispanica). Food Biosci. 37, 100731 (2020). https://doi.org/10.1016/j.fbio.2020.100731

    Article  CAS  Google Scholar 

  18. A.A. Mohammad, F.M. Mehaya, S.H. Salem, H.M. Amer, Psyllium and okra mucilage as co-carrier wall materials for fenugreek oil encapsulation and its utilization as fat replacers in pan bread and biscuit production. Heliyon 10(3), e25321 (2024). https://doi.org/10.1016/j.heliyon.2024.e25321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C. Wang, H. Wang, A.M. Abd El-Aty, W. Su, M. Tan, Preparation of bilayer nano-oleogel by whey protein isolate and soy lecithin for fish oil encapsulation and its application in cookies. Food Hydrocoll. 146, 109280 (2024). https://doi.org/10.1016/j.foodhyd.2023.109280

    Article  CAS  Google Scholar 

  20. S. Daei, F. Mohtarami, S. Pirsa, A biodegradable film based on carrageenan gum/Plantago psyllium mucilage/red beet extract: physicochemical properties, biodegradability and water absorption kinetic. Polym. Bull. 79(12), 11317–11338 (2022). https://doi.org/10.1007/s00289-021-04067-0

    Article  CAS  Google Scholar 

  21. R.A. Yorghanlu, H. Hemmati, S. Pirsa, A. Makhani, Production of biodegradable sodium caseinate film containing titanium oxide nanoparticles and grape seed essence and investigation of physicochemical properties. Polym. Bull. 79(10), 8217–8240 (2022). https://doi.org/10.1007/s00289-021-03900-w

    Article  CAS  Google Scholar 

  22. S. Pirsa, Nanocomposite base on carboxymethylcellulose hydrogel: simultaneous absorbent of ethylene and humidity to increase the shelf life of banana fruit. Int. J. Biol. Macromol. 193, 300–310 (2021). https://doi.org/10.1016/j.ijbiomac.2021.10.075

    Article  CAS  PubMed  Google Scholar 

  23. M.A. Shabkhiz, M.K. Pirouzifard, S. Pirsa, G.R. Mahdavinia, Alginate hydrogel beads containing thymus daenensis essential oils/glycyrrhizic acid loaded in β-cyclodextrin. Investigation of structural, antioxidant/antimicrobial properties and release assessment. J. Mol. Liquids 344, 117738 (2021). https://doi.org/10.1016/j.molliq.2021.117738

    Article  CAS  Google Scholar 

  24. B. Firtin, H. Yenipazar, A. Saygun, N. Şahin Yeşilçubuk, Encapsulation of chia seed oil with curcumin and investigation of release behaivour & antioxidant properties of microcapsules during in vitro digestion studies. LWT-Food Sci. Technol. 134, 109947 (2020). https://doi.org/10.1016/j.lwt.2020.109947

    Article  CAS  Google Scholar 

  25. H.C. Carneiro, R.V. Tonon, C.R. Grosso, M.D. Hubinger, Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 115(4), 443–451 (2013). https://doi.org/10.1016/j.jfoodeng.2012.03.033

    Article  CAS  Google Scholar 

  26. J.E. Eastman, C.O. Moore, Cold water-soluble granular starch for gelled food composition. U.S. Patent 4465702 (1984)

  27. R.V. Tonon, C. Brabet, M.D. Hubinger, Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng. 88(3), 411–418 (2008). https://doi.org/10.1016/j.jfoodeng.2008.02.029

    Article  Google Scholar 

  28. J.K. Mohammed, A.A. Mahdi, C. Ma, A.E. Elkhedir, Q.A. Al-Maqtari, W. Al-Ansi, H. Wang, Application of argun fruit polysaccharide in microencapsulation of Citrus aurantium L. essential oil: preparation, characterization, and evaluating the storage stability and antioxidant activity. J. Food Meas. Charact. 15, 155–169 (2021). https://doi.org/10.1007/s11694-020-00629-4

    Article  Google Scholar 

  29. J. Rumpf, R. Burger, M. Schulze, Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 233, 123470 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123470

    Article  CAS  PubMed  Google Scholar 

  30. S. Uysal, G. Zengin, M. Locatelli, M.B. Bahadori, A. Mocan, G. Bellagamba, A. Aktumsek, Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 8, 290 (2017). https://doi.org/10.3389/fphar.2017.00290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Minekus, M. Alminger, P. Alvito, S. Ballance, T.O.R.S.T.E.N. Bohn, C. Bourlieu, A. Brodkorb, A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 5(6), 1113–1124 (2014). https://doi.org/10.1039/c3fo60702j

    Article  CAS  PubMed  Google Scholar 

  32. A. Karaaslan, Nano-and micro-encapsulation of long-chain-fatty-acid-rich melon seed oil and its release attributes under in vitro digestion model. Foods 12(12), 2371 (2023). https://doi.org/10.3390/foods12122371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Q. Liang, C. Zhou, A. Rehman, A. Qayum, Y. Liu, X. Ren, Improvement of physicochemical properties, microstructure and stability of lotus root starch/xanthan gum stabilized emulsion by multi-frequency power ultrasound. Ultrason. Sonochem. 101, 106687 (2023). https://doi.org/10.1016/j.ultsench.2023.106687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. K.M. Goh, X.Y. Hong, K.L. Nyam, Influence of homogenization cycle on the thermal and storage stability of kenaf seed oil (KSO) emulsion. J. Food Meas. Charact. 15, 3307–3313 (2021). https://doi.org/10.1007/s11694-021-00910-0

    Article  Google Scholar 

  35. J. Yu, Y. Zhang, R. Zhang, Y. Gao, L. Mao, Stabilization of oil-in-water high internal phase emulsions with octenyl succinic acid starch and beeswax oleogel. Int. J. Biol. Macromol. 254, 127815 (2024). https://doi.org/10.1016/j.ijbiomac.2023.127815

    Article  CAS  PubMed  Google Scholar 

  36. E. Apostolidis, G.N. Stoforos, I. Mandala, Starch physical treatment, emulsion formation, stability, and their applications. Carbohydr. Polym. 305, 120554 (2023). https://doi.org/10.1016/j.carbpol.2023.120554

    Article  CAS  PubMed  Google Scholar 

  37. T. Xu, J. Yang, S. Hua, Y. Hong, Z. Gu, L. Cheng, C. Li, Characteristics of starch-based Pickering emulsions from the interface perspective. Trends Food Sci. Technol. 105, 334–346 (2020). https://doi.org/10.1016/j.tifs.2020.09.026

    Article  CAS  Google Scholar 

  38. R.L.J. Almeida, N.C. Santos, W.B. de Brito Lima, C.E. de Araújo Padilha, N.S. Rios, E.S. Dos Santos, Effect of enzymatic hydrolysis on digestibility and morpho-structural properties of hydrothermally pre-treated red rice starch. Int. J. Biol. Macromol. 222, 65–76 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.089

    Article  CAS  PubMed  Google Scholar 

  39. Y. Tao, Z. Tang, Q. Huang, X. Xu, X. Cheng, G. Zhang, Y. Sun, Effects of spray drying temperature on physicochemical properties of grapeseed oil microcapsules and the encapsulation efficiency of pterostilbene. LWT (2024). https://doi.org/10.1016/j.lwt.2024.115779

    Article  Google Scholar 

  40. X. Zhang, Y. Li, J. Li, H. Liang, Y. Chen, B. Li, S. Liu, Edible oil powders based on spray-dried Pickering emulsion stabilized by soy protein/cellulose nanofibrils. LWT 154, 112605 (2022). https://doi.org/10.1016/j.lwt.2021.112605

    Article  CAS  Google Scholar 

  41. Z. Bahrampour, S.H. Peighambardoust, A.M. Amini, M. Soltanzadeh, Application of low-, and medium-molecular weight chitosan for preparation of spray-dried microparticles loaded with Ferulago angulata essential oil: Physicochemical, antioxidant, antibacterial and in-vitro release properties. Int. J. Biol. Macromol. 126, 554 (2023). https://doi.org/10.1016/j.ijbiomac.2023.126554

    Article  CAS  Google Scholar 

  42. T. Ahad, A. Gull, F.A. Masoodi, D.S. Hussein, J. Alkahtani, Effect of process parameters on production of ginger oleoresin powder by spray drying using whey protein isolate as the wall material. Biomass Convers. Biorefin. (2022). https://doi.org/10.1007/s13399-022-03464-3

    Article  Google Scholar 

  43. M.I.M.J. Barbosa, C.D. Borsarelli, A.Z. Mercadante, Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Res. Int. 38(8–9), 989–994 (2005). https://doi.org/10.1016/j.foodres.2005.02.018

    Article  CAS  Google Scholar 

  44. A. Henao-Ardila, M.X. Quintanilla-Carvajal, P.R. Santagapita, M. Caldas-Abril, V. Bonilla-Bravo, F.L. Moreno, Effect of wall material on lipophilic functional compounds of high oleic palm oil emulsions encapsulated by refractance window drying. Heliyon 9(11), e21499 (2023). https://doi.org/10.1016/j.heliyon.2023.e21499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. I.K. Sani, S.P. Geshlaghi, S. Pirsa, A. Asdagh, Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocoll. 117, 106719 (2021). https://doi.org/10.1016/j.foodhyd.2021.106719

    Article  CAS  Google Scholar 

  46. N.E. Rahmani-Manglano, E.M. Guadix, B. Yesiltas, C. Prieto, J.M. Lagaron, C. Jacobsen, P.J. García-Moreno, Non-emulsion-based encapsulation of fish oil by coaxial electrospraying assisted by pressurized gas enhances the oxidative stability of a capsule-fortified salad dressing. Food Chem. 431, 137157 (2024). https://doi.org/10.1016/j.foodchem.2023.137157

    Article  CAS  PubMed  Google Scholar 

  47. V. Anand, V. Ksh, A. Kar, E. Varghese, S. Vasudev, C. Kaur, Encapsulation efficiency and fatty acid analysis of chia seed oil microencapsulated by freeze-drying using combinations of wall material. Food Chem. 430, 136960 (2024). https://doi.org/10.1016/j.foodchem.2023.136960

    Article  CAS  PubMed  Google Scholar 

  48. M. Munoz-Ibanez, C. Azagoh, B.N. Dubey, E. Dumoulin, C. Turchiuli, Changes in oil-in-water emulsion size distribution during the atomization step in spray-drying encapsulation. J. Food Eng. 167, 122–132 (2015). https://doi.org/10.1016/j.jfoodeng.2015.02.008

    Article  Google Scholar 

  49. V.Y. Ixtaina, L.M. Julio, J.R. Wagner, S.M. Nolasco, M.C. Tomás, Physicochemical characterization and stability of chia oil microencapsulated with sodium caseinate and lactose by spray-drying. Powder Technol. 271, 26–34 (2015). https://doi.org/10.1016/j.powtec.2014.11.006

    Article  CAS  Google Scholar 

  50. N.C. Santos, R.L.J. Almeida, M.D.F.D. de Medeiros, R.T. Hoskin, M.R. da Silva Pedrini, Foaming characteristics and impact of ethanol pretreatment in drying behavior and physical characteristics for avocado pulp powder obtained by foam mat drying. J. Food Sci. 87(4), 1780–1795 (2022). https://doi.org/10.1111/1750-3841.16123

    Article  CAS  PubMed  Google Scholar 

  51. H.V. Chuyen, P.D. Roach, J.B. Golding, S.E. Parks, M.H. Nguyen, Encapsulation of carotenoid-rich oil from Gac peel: Optimisation of the encapsulating process using a spray drier and the storage stability of encapsulated powder. Powder Technol. 344, 373–379 (2019). https://doi.org/10.1016/j.powtec.2018.12.012

    Article  CAS  Google Scholar 

  52. S. Ghasemi, S.M. Jafari, E. Assadpour, M. Khomeiri, Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydr. Polym. 177, 369–377 (2017). https://doi.org/10.1016/j.carbpol.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  53. W. Xu, H. Sun, H. Li, Z. Li, S. Zheng, D. Luo, B.R. Shah, Preparation and characterization of tea oil powder with high water solubility using Pickering emulsion template and vacuum freeze-drying. LWT 160, 113330 (2022). https://doi.org/10.1016/j.lwt.2022.113330

    Article  CAS  Google Scholar 

  54. N.C. Icyer, O.S. Toker, S. Karasu, F. Tornuk, T. Kahyaoglu, M. Arici, Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. J. Food Meas. Charact. 11, 50–57 (2017). https://doi.org/10.1007/s11694-016-9370-8

    Article  Google Scholar 

  55. D. Lin, L. Xiao, S. Li, W. Qin, D.A. Loy, H. Chen, Q. Zhang, Effects of fructooligosaccharide and soybean protein isolate in the microencapsulation of walnut oil. Ind. Crops Product. 177, 114431 (2022). https://doi.org/10.1016/j.indcrop.2021.114431

    Article  CAS  Google Scholar 

  56. A.M. Bakry, J. Huang, Y. Zhai, Q. Huang, Myofibrillar protein with κ-or λ-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation. Food Hydrocoll. 96, 43–53 (2019). https://doi.org/10.1016/j.foodhyd.2019.04.070

    Article  CAS  Google Scholar 

  57. L. Liu, X. Dai, H. Kang, Y. Xu, W. Hao, Structural and functional properties of hydrolyzed/glycosylated ovalbumin under spray drying and microwave freeze drying. Food Sci. Hum. Wellness 9(1), 80–87 (2020). https://doi.org/10.1016/j.fshw.2020.01.003

    Article  Google Scholar 

  58. A.A. Saparbekova, G.O. Kantureyeva, D.E. Kudasova, Z.K. Konarbayeva, A.S. Latif, Potential of phenolic compounds from pomegranate (Punica granatum L.) by-product with significant antioxidant and therapeutic effects: a narrative review. Saudi J. Biol. Sci. 30(2), 103553 (2023). https://doi.org/10.1016/j.sjbs.2022.103553

    Article  CAS  PubMed  Google Scholar 

  59. A. Al-Hamayda, B. Abu-Jdayil, M. Ayash, J. Tannous, Advances in microencapsulation techniques using Arabic gum: a comprehensive review. Ind. Crops Prod. 205, 117556 (2023). https://doi.org/10.1016/j.indcrop.2023.117556

    Article  CAS  Google Scholar 

  60. L. Tang, H. Liu, G. Huang, Z. Yuan, M. Fu, Z. Bu, Y. Xu, The structural characterization, physicochemical properties, and stability of gardenia yellow pigment microcapsules. LWT 162, 113507 (2022). https://doi.org/10.1016/j.lwt.2022.113507

    Article  CAS  Google Scholar 

  61. B. Wirjosentono, L. Marpaung, Microencapsulation of ginger-based essential oil (Zingiber cassumunar roxb) with chitosan and oil palm trunk waste fiber prepared by spray-drying method. Case Stud. Therm. Eng. 18, 100606 (2020). https://doi.org/10.1016/j.csite.2020.100606

    Article  Google Scholar 

  62. F.M. Ramos, V.S. Júnior, A.S. Prata, Physical aspects of orange essential oil-contaning particles after vacuum spray drying processing. Food Chem. X 12, 100142 (2021). https://doi.org/10.1016/j.fochx.2021.100142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. P. Kong, J.P. Abe, S. Masuo, T. Enomae, Preparation and characterization of tea tree oil-β-cyclodextrin microcapsules with super-high encapsulation efficiency. J. Bioresour. Bioprod. 8(3), 224–234 (2023). https://doi.org/10.1016/j.jobab.2023.03.004

    Article  CAS  Google Scholar 

  64. B.F. Feitosa, R.L.J. Almeida, N.C. Santos, E.N.A. Oliveira, M.S.B.S. Lermen, S.S. Monteiro, E.G. Lima, M.T. Cavalcanti, J.S.F. Araújo, G.S.C. Borges, Effects of different temperatures on electric oven drying of myrtle (Eugenia gracillima Kiaersk.) seeds modified by high hydrostatic pressure (HHP). LWT (2023). https://doi.org/10.1016/j.lwt.2023.115554

    Article  Google Scholar 

  65. G. Zhao, C. Hu, H. Luo, Effects of combined microwave-hot-air-drying on the physicochemical properties and antioxidant activity of Rhodomyrtus tomentosa berry powder. J. Food Meas. Charact. 14(3), 1433–1442 (2020). https://doi.org/10.1007/s11694-020-00393-5

    Article  Google Scholar 

  66. C. Zhou, M. Wu, D. Sun, W. Wei, H. Yu, T. Zhang, Twin-screw extrusion of oat: evolutions of rheological behavior, thermal properties and structures of extruded oat in different extrusion zones. Foods 11(15), 2206 (2022). https://doi.org/10.3390/foods11152206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. R.S. Acácio, A.J. Pamphile-Adrian, P.P. Florez-Rodriguez, J.D. de Freitas, H.F. Goulart, A.E.G. Santana, Dataset of Schinus terebinthifolius essential oil microencapsulated by spray-drying. Data Brief 47, 108927 (2023). https://doi.org/10.1016/j.dib.2023.108927

    Article  CAS  Google Scholar 

  68. M. Ikeda, A.M. de Melo, B.P. Costa, R.C.T. Barbi, R.H. Ribani, Nutritional and bioactive composition of achachairu (Garcinia humilis) seed flour: a potential ingredient at three stages of ripening. LWT 152, 112251 (2021). https://doi.org/10.1016/j.lwt.2021.112251

    Article  CAS  Google Scholar 

  69. L.P.H. Bastos, B. de Sá Costa, R.P. Siqueira, E.E. Garcia-Rojas, Complex coacervates of β-lactoglobulin/sodium alginate for the microencapsulation of black pepper (Piper nigrum L.) essential oil: simulated gastrointestinal conditions and modeling release kinetics. Int. J. Biol. Macromol. 160, 861–870 (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.265

    Article  CAS  PubMed  Google Scholar 

  70. P. Choudhary, S. Dutta, J.A. Moses, C. Anandharamakrishnan, Nanoliposomal encapsulation of chia oil for sustained delivery of α-linolenic acid. Int. J. Food Sci. Technol. 56(9), 4206–4214 (2021). https://doi.org/10.1111/ijfs.15064

    Article  CAS  Google Scholar 

  71. S. Jafari, S.M. Jafari, M. Ebrahimi, I. Kijpatanasilp, K. Assatarakul, A decade overview and prospect of spray drying encapsulation of bioactives from fruit products: characterization, food application and in vitro gastrointestinal digestion. Food Hydrocoll. 134, 108068 (2023). https://doi.org/10.1016/j.foodhyd.2022.108068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NCS was supported by Fundação de Apoio à Pesquisa do Estado da Paraíba (FAPESQ-PB). RLJA was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors are grateful to the Federal University of Campina Grande (UFCG) and Federal University of Rio Grande do Norte (UFRN) for technical support.

Funding

Funding was provided by Fundação de Apoio à Pesquisa do Estado da Paraíba.

Author information

Authors and Affiliations

Authors

Contributions

NCS: conceptualization, methodology, investigation, writing (draft and review), and visualization. RLJA: data curation and writing (draft and review). ACOB: formal analysis. VMAS: visualization. TLBL: data curation. LPSN: investigation. FMS: methodology. FSS: formal analysis. MTLF: conceptualization and supervision. MSM: data curation. APO: software. SNS: formal analysis. RALD: methodology and funding acquisition. MFSS: conceptualization and supervision. All authors read and approved the manuscript.

Corresponding author

Correspondence to Newton Carlos Santos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Ethics approval was not required for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, N.C., Almeida, R.L.J., de Brito, A.C.O. et al. Encapsulation of avocado oil with modified rice starch: thermal and functional properties and gastrointestinal release. Food Measure (2024). https://doi.org/10.1007/s11694-024-02522-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02522-w

Keywords

Navigation