Skip to main content
Log in

Extract of common mallow (Malva sylvestris) petals incorporated in starch/tragacanth gum film as a halochromic indicator for monitoring of Nile tilapia (Oreochromis niloticus) fillet quality

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aimed to use common mallow (Malva sylvestris) extract (EMS) with ratios of 0.0, 0.5, 1.0, and 2.0% as an indicator in the film produced from corn starch/tragacanth gum matrix using a casting method to monitor the freshness of Nile tilapia fillets stored at 4 °C. The results showed that the total anthocyanin content of EMS was 1185.6 ± 0.58 mg cyanidin-3-glucoside Kg−1. The starch/tragacanth gum films incorporated with 0.5 and 1.0% EMS were sensitive to the 0.8 and 1.4 M ammonia and their color changed after 20 min of exposure, while starch/tragacanth gum film incorporated with 2.0% EMS showed no visible color change in the presence of 0.2, 0.8 and 1.4% M ammonia. The Fourier transform infrared and X-ray diffraction spectra of the colorimetric films showed that EMS was successfully immobilized into the starch/tragacanth gum matrix. The moisture content and water solubility were significantly lower in the films containing EMS compared to those with no EMS supplementation. With increasing EMS concentration, water vapor permeability and ultimate tensile strength significantly decreased with the lowest values observed in films incorporated with 2.0% EMS (p < 0.05). The color of the starch/tragacanth gum films incorporated with 0.5 and 1.0% EMS was changed with a decrease in the quality and freshness of Nile tilapia fillet from pink to green and gray, respectively, after 12 days of storage at 4 °C. Findings of the present study illustrated that the pH-sensitive starch/tragacanth gum film incorporated with 0.5–1.0% EMS could be used as a halochromic indicator in the smart packaging of Nile tilapia fillet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Rukchon, A. Nopwinyuwong, S. Trevanich, T. Jinkarn, P. Suppakul, Talanta 130, 547–554 (2014). https://doi.org/10.1016/j.talanta.2014.07.048

    Article  CAS  PubMed  Google Scholar 

  2. V.A. Pereira Jr., I.N.Q. de Arruda, R. Stefani, Food Hydrocoll. 43, 180–188 (2015). https://doi.org/10.1016/j.foodhyd.2014.05.014

    Article  CAS  Google Scholar 

  3. G. Jiang, X. Hou, X. Zeng, C. Zhang, H. Wu, G. Shen, S. Li, Q. Luo, M. Li, X. Liu, A. Chen, Int. J. Biol. Macromol. 143, 359–372 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.024

    Article  CAS  PubMed  Google Scholar 

  4. S. Roy, J.W. Rhim, Crit. Rev. Food Sci. Nutr. 61(14), 2297–2325 (2021). https://doi.org/10.1080/10408398.2020.1776211

    Article  CAS  PubMed  Google Scholar 

  5. A. Pacquit, J. Frisby, D. Diamond, K.T. Lau, A. Farrell, B. Quilty, D. Diamond, Food Chem. 102(2), 466–470 (2007). https://doi.org/10.1016/j.foodchem.2006.05.052

    Article  CAS  Google Scholar 

  6. H. Yong, J. Liu, Food Packag. Shelf Life 26, 100550 (2020). https://doi.org/10.1016/j.fpsl.2020.100550

    Article  Google Scholar 

  7. L.B. Golasz, J.D. Silva, S.B.D. Silva, Food Sci. Tech. 33, 155–162 (2013). https://doi.org/10.1590/S0101-20612013000500023

    Article  Google Scholar 

  8. S. Roy, J.W. Rhim, Int. J. Biol. Macromol. 148, 666–676 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.204

    Article  CAS  PubMed  Google Scholar 

  9. H. Yousefi, H.M. Su, S.M. Imani, K. Alkhaldi, C.D. Filipe, T.F. Didar, ACS Sensors 4(4), 808–821 (2019). https://doi.org/10.1021/acssensors.9b00440

    Article  CAS  PubMed  Google Scholar 

  10. J. Liu, H. Wang, M. Guo, L. Li, M. Chen, S. Jiang, X. Li, S. Jiang, Food Hydrocoll. 94, 1–10 (2019). https://doi.org/10.1016/j.foodhyd.2019.03.008

    Article  CAS  Google Scholar 

  11. Q. Ma, L. Wang, Sens. Actuators B Chem. 235, 401–407 (2016). https://doi.org/10.1016/j.snb.2016.05.107

    Article  CAS  Google Scholar 

  12. L. Stoll, A.M.D. Silva, A.O.E.S. Iahnke, T.M.H. Costa, S.H. Flores, A.D.O. Rios, J. Food Process. Preserve. 41(6), e13218 (2017). https://doi.org/10.1111/jfpp.13218

    Article  CAS  Google Scholar 

  13. T.J. Gutiérrez, V.A. Alvarez, Food Hydrocoll. 77, 407–420 (2018). https://doi.org/10.1016/j.foodhyd.2017.10.017

    Article  CAS  Google Scholar 

  14. A. Almasian, F. Najafi, M. Eftekhari, M.R.S. Ardekani, M. Sharifzadeh, M. Khanavi, Mater. Sci. Eng. C 114, 111039 (2020). https://doi.org/10.1016/j.msec.2020.111039

    Article  CAS  Google Scholar 

  15. Z. NazariKhorasgani, M. Rahmani, Jentashapir J. Health Res. 4(1), 1–10 (2014)

    Google Scholar 

  16. M. Ghorbani, R. Molaei, E. Divsalar, P. Ezati, M. Moradi, H. Tajik, IFSET 74, 102864 (2021). https://doi.org/10.1016/j.ifset.2021.102864

    Article  CAS  Google Scholar 

  17. T.J. Gutiérrez, M.S. Tapia, E. Pérez, L. Famá, Food Hydrocoll. 45, 211–217 (2015). https://doi.org/10.1016/j.foodhyd.2014.11.017

    Article  CAS  Google Scholar 

  18. H.P. Nguyen, N. Lumdubwong, Carbohydr. Polym. 154, 112–120 (2016). https://doi.org/10.1016/j.carbpol.2016.08.034

    Article  CAS  Google Scholar 

  19. C.A. Tischer, M. Iacomini, P.A. Gorin, Carbohydr. Res. 337(18), 1647–1655 (2002). https://doi.org/10.1016/S0008-6215(02)00023

    Article  CAS  PubMed  Google Scholar 

  20. M. Ranjbar-Mohammadi, Int. J. Boil. Macromol 109, 476–482 (2018). https://doi.org/10.1016/j.ijbiomac.2017.12.093

    Article  CAS  Google Scholar 

  21. B. Singh, L. Varshney, S. Francis, Phys. Chem. 135, 94–105 (2017). https://doi.org/10.1016/j.radphyschem.2017.01.044

    Article  CAS  Google Scholar 

  22. A. Farina, A. Doldo, V. Cotichini, M. Rajevic, M.G. Quaglia, N. Mulinacci, F.F. Vincieri, J. Pharm. Biomed. Anal. 14(1–2), 203–211 (1995). https://doi.org/10.1016/0731-7085(95)01632-5

    Article  CAS  PubMed  Google Scholar 

  23. P. Ezati, H. Tajik, M. Moradi, Sens. Actuators B Chem. 285, 519–528 (2019). https://doi.org/10.1016/j.snb.2019.01.089

    Article  CAS  Google Scholar 

  24. P. Ezati, Y.J. Bang, J.W. Rhim, Food Chem. 337, 127–135 (2021). https://doi.org/10.1016/j.2020.127995

    Article  Google Scholar 

  25. C.L. Luchese, J.C. Spada, I.C. Tessaro, Ind. Crops Prod. 109, 619–626 (2017). https://doi.org/10.1016/j.indcrop.2017.09.020

    Article  CAS  Google Scholar 

  26. M. Alizadeh-Sani, M. Tavassoli, D.J. McClements, H. Hamishehkar, Food Hydrocoll. 111, 106–237 (2021). https://doi.org/10.1016/j.foodhyd.2020.106237

    Article  CAS  Google Scholar 

  27. S. Amjadi, S. Emaminia, S.H. Davudian, S. Pourmohammad, H. Hamishehkar, L. Roufegarinejad, Carbohyd. Polym. 216, 376–384 (2019). https://doi.org/10.1016/j.carbpol.2019.03.062

    Article  CAS  Google Scholar 

  28. J. Huang, M. Chen, Y. Zhou, Y. Li, Y. Hu, Int. J. Boil. Macromol. 162, 1250–1261 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.156

    Article  CAS  Google Scholar 

  29. P.F. Pereira, C.T. Andrade, Carbohyd. Polym. 165, 238–246 (2017). https://doi.org/10.1016/j.carbpol.2017.02.047

    Article  CAS  Google Scholar 

  30. Standard test methods for water vapor transmission of material, ASTM, E96–95 (1995)

  31. Standard test method for tensile properties of thin plastic sheeting, ASTM, D882–02(2002)

  32. Z.A. Bahmani, S.V. Hosseini, A. Amanpour, J. Aquat. Food Prod. Technol. 30(10), 1315–1329 (2021). https://doi.org/10.1080/10498850.2021.1988790

    Article  CAS  Google Scholar 

  33. S. Naghdi, M. Rezaei, M. Abdollahi, Int. J. Biol. Macromol. 191, 161–170 (2021). https://doi.org/10.1016/j.ijbiomac.2021.09.045

    Article  CAS  PubMed  Google Scholar 

  34. S. Mohammadalinejhad, H. Almasi, M. Moradi, Food Control 113, 107169 (2020). https://doi.org/10.1016/j.foodcont.2020.10716934

    Article  CAS  Google Scholar 

  35. X. Wu, L. Gu, R.L. Prior, S. McKay, J. Agric. Food Chem. 52(26), 7846–7856 (2004). https://doi.org/10.1021/jf0486850

    Article  CAS  PubMed  Google Scholar 

  36. S. Lieberman, A research review. Alternat Complement Therapies. 13(2), 107–110 (2007)

    Article  Google Scholar 

  37. L. Wada, B. Ou, Agric. Food Chem. 52(8021), 8030 (2002). https://doi.org/10.1021/jf011405l

    Article  CAS  Google Scholar 

  38. Th. Siriwoharn, R.E. Wrolstad, C.E. Finn, C.B. Pereira, Agric. Food Chem. 52, 8021–8030 (2004). https://doi.org/10.1021/jf048619y

    Article  CAS  Google Scholar 

  39. N. Ahmadiani, R.J. Robbins, T.M. Collins, M.M. Giusti, J. Agric. Food Chem. 62(30), 7524–7531 (2014). https://doi.org/10.1021/jf501991q

    Article  CAS  PubMed  Google Scholar 

  40. M. Rasouli, P. Roostaei, A. Babaei, Spring Summer 2, 61–74 (2017)

    Google Scholar 

  41. I. Choi, J.Y. Lee, M. Lacroix, J. Han, Food Chem. 218, 122–128 (2017). https://doi.org/10.1016/j.foodchem.2016.09.050

    Article  CAS  PubMed  Google Scholar 

  42. M. Seddighfar, S. Mirghazanfari, M. Dadpay, JIM 18(2), 181–188 (2020). https://doi.org/10.1016/j.joim.2020.02.003

    Article  PubMed  Google Scholar 

  43. M. Algarra, A. Fernandes, N. Mateus, V. de Freitas, J.C.E. da Silva, J. Casado, J. Food Compos. Anal. 33(1), 71–76 (2014). https://doi.org/10.1016/j.jfca.2013.11.005

    Article  CAS  Google Scholar 

  44. L. Prietto, T.C. Mirapalhete, V.Z. Pinto, J.F. Hoffmann, N.L. Vanier, L.-T. Lim, A.R.G. Dias, E. da Rosa Zavareze, LWT 80, 492–500 (2017). https://doi.org/10.1016/j.lwt.2017.03.006

    Article  CAS  Google Scholar 

  45. M. Shahid, F. Mohammad, J. Clean. Prod. 53, 310–331 (2013). https://doi.org/10.1016/j.jclepro.2013.03.031

    Article  CAS  Google Scholar 

  46. A. Castañeda-Ovando, C.A. Galán-Vidal, M.D.L. Pacheco-Hernández, J.A. Rodríguez, M.E. Páez-Hernández, CyTA. J. Food 7(3), 225–232 (2009). https://doi.org/10.1080/19476330903092837

    Article  CAS  Google Scholar 

  47. J. Zhang, X. Zou, X. Zhai, X. Huang, C. Jiang, M. Holmes, Food Chem. 272, 306–312 (2019). https://doi.org/10.1016/j.foodchem.2018.08.041

    Article  CAS  PubMed  Google Scholar 

  48. Y. Qin, Y.Y. Zhang, Z.H. Li, L. Yuan, M.L. Fan, J.T.R. Zhao, Int. J. Food Sci. Technol. 52(3), 1471–1479 (2015). https://doi.org/10.1007/s13197-013-1137-1

    Article  CAS  Google Scholar 

  49. M. Kurek, I.E. Garofulić, M.T. Bakić, M. Ščetar, V.D. Uzelac, Food Hydrocoll. 84, 238–246 (2018). https://doi.org/10.1016/j.foodhyd.2018.05.050

    Article  CAS  Google Scholar 

  50. M. Moradi, H. Tajik, H. Almasi, M. Forough, P. Ezati, Carbohydr. Polym. 222, 115030 (2019). https://doi.org/10.1016/j.carbpol.2019.115030

    Article  CAS  PubMed  Google Scholar 

  51. M. Yang, X. Zhang, S. Guan, Y. Dou, X. Gao, Int. J. Biol. Macromol. 158, 1259–1267 (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.044

    Article  CAS  Google Scholar 

  52. X. Zhai, J. Shi, X. Zou, S. Wang, C. Jiang, J. Zhang, X. Huang, W. Zhang, M. Holmes, Food Hydrocoll. 69, 308–317 (2017). https://doi.org/10.1016/j.foodhyd.2017.02.014

    Article  CAS  Google Scholar 

  53. D. Piñeros-Hernandez, C. Medina-Jaramillo, A. López-Córdoba, S. Goyanes, Food Hydrocoll. 63, 488–495 (2017). https://doi.org/10.1016/j.foodhyd.2016.09.034

    Article  CAS  Google Scholar 

  54. K. Hajinasrollah, S. Habibi, H. Nazockdast, J. Eng. Fibers Fabr. 14, 142–155 (2019). https://doi.org/10.1177/1558925019881142

    Article  CAS  Google Scholar 

  55. P. Ezati, H. Tajik, M. Moradi, R. Molaei, Int. J. Biol. Macromol. 132, 157–165 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.173

    Article  CAS  PubMed  Google Scholar 

  56. R. Andretta, C.L. Tessaro, J.C. Spada, Food Hydrocoll. 93, 317–324 (2019). https://doi.org/10.1016/j.foodhyd.2019.02.019

    Article  CAS  Google Scholar 

  57. S. Huang, Y. Xiong, Y. Zou, Q. Dong, F. Ding, X. Liu, H. Li, Food Hydrocoll. 90, 198–205 (2019). https://doi.org/10.1016/j.foodhyd.2018.12.009

    Article  CAS  Google Scholar 

  58. C.M. Yoshida, V.B.V. Maciel, M.E.D. Mendonça, T.T. Franco, LWT 55(1), 83–89 (2014). https://doi.org/10.1016/j.lwt.2013.09.015

    Article  CAS  Google Scholar 

  59. K.A. Sariningsih, I. Rostini, K. Haetami, Asian. Food Sci. J 13(4), 1–9 (2019). https://doi.org/10.9734/afsj/2019/v13i430114

    Article  Google Scholar 

  60. F. Nowzari, B. Shábanpour, S.M. Ojagh, Food Chem. 141, 1667–1672 (2013). https://doi.org/10.1016/j.foodchem.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  61. N. Wells, D. Yusufu, A. Mills, Talanta 194, 830–836 (2019). https://doi.org/10.1016/j.talanta.2018.11.020

    Article  CAS  PubMed  Google Scholar 

  62. E. Jamróz, P. Kulawik, P. Guzik, I. Duda, Food Hydrocoll. 97, 105–211 (2019). https://doi.org/10.1016/j.foodhyd.2019.105211

    Article  CAS  Google Scholar 

  63. F. Bouaziz, C.B. Helbert, M.B. Romdhane, M. Koubaa, F. Bhiri, F. Kallel, F. Chaari, D. Driss, L. Buon, S.E. Chaabouni, Int. J. Biol. Macromol. 72, 472–479 (2015). https://doi.org/10.1016/j.ijbiomac.2014.08.044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Dr. Mehdi Alboofetileh, the scientific member staff of the National Center for Aquatic Processing, Anzali, Iran for his help in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houman Rajabi Islami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noghani Bahambari, F., Rajabi Islami, H. & Shamsaie Mehrgan, M. Extract of common mallow (Malva sylvestris) petals incorporated in starch/tragacanth gum film as a halochromic indicator for monitoring of Nile tilapia (Oreochromis niloticus) fillet quality. Food Measure (2024). https://doi.org/10.1007/s11694-024-02484-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02484-z

Keywords

Navigation