Skip to main content
Log in

Modified GAB model of sorption on banana: spreading pressure and Gibbs free energy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aims to determine the modelling of the sorption phenomenon, which is influenced by temperature and relative humidity in Barlin bananas. Modification of GAB to obtain new equations for determining spreading pressure and Gibbs free energy values was evaluated in this study. In addition, the characteristics of bananas (surface topography, functional groups, and crystal phase) were identified. Treatment incubation temperatures were 5–25 °C using the static gravimetric method. Equilibrium moisture content was directly proportional to the temperature and water activity increased with water content of 11.52–51.36%db (adsorption) and 25.59–97.01%db (desorption). Based on the BET classification, the sorption curve of Barlin banana pieces forms a type II. Then, the Peleg model became the best model for predicting desorption and adsorption phenomena in Barlin bananas with values of R2 > 0.9900, P < 0.05, and RMSE < 0.01. The process of identifying the new equation from the modified GAB equation indicates that the values of spreading pressure and Gibbs free energy are 0.93–1.68 J/m2 and 0.12–52.49 J/mol, respectively. FE-SEM determination shows swelling on the material’s surface, allowing surface desorption and adsorption. Meanwhile, FTIR analysis results show the valley point at 3273.16, indicated as an OH bond, and 2926.59, indicated as a C–H bond. Then, XRD shows that the crystallinity level was 39.48%, and the peak point is 2θ = 17.08º, which generally occurs in starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. A. Abdelazez, D.M. Mohamed, M.M.M. Refaey, J. Niu, Intervention effect of freeze-dried probiotic and unripe banana pulp combination on set-type bio-yogurt production during storage. J. Food Meas. Charact. (2023). https://doi.org/10.1007/s11694-023-02208-9

    Article  Google Scholar 

  2. A. Ray, A. Kumar, R.S. Matche, A.K. Srivastava, S.D. Sakhare, Effect of heat treatments on quinoa germ quality and its storage study. J. Food Sci. Technol. 60(7), 2023–2030 (2023). https://doi.org/10.1007/s13197-023-05736-w

    Article  CAS  PubMed  Google Scholar 

  3. B.E. Meza, J.M. Peralta, Rheological, thermal, and moisture sorption characterisation of cocoa-flavoured confectionery coatings elaborated with isomalt as sucrose substitute. Food Biophys. (2023). https://doi.org/10.1007/s11483-023-09819-1

    Article  Google Scholar 

  4. Y. Bahammou, M. Kouhila, O. Babaharra, Z. Tagnamas, H. Lamsyehe, A. Lamharrar, R. Idlimam, Experimental and numerical study of the impact of ambient air humidity on mortar cement durability using a static gravimetric method. Heat Mass Transf. und Stoffuebertragung 60(1), 1–19 (2023). https://doi.org/10.1007/s00231-023-03417-0

    Article  ADS  CAS  Google Scholar 

  5. H. Ma, Z. Jiang, J. Tie, C. Cheng, J. Wu, Y. Zhong, F. Gao, X. Zhan, Q. Zhang, Insights into the interfacial transfer impedance behavior of moisture and dynamics of sorption diffusion in dried tobacco leaves surface. Cellulose 31(1), 169–185 (2023). https://doi.org/10.1007/s10570-023-05634-6

    Article  CAS  Google Scholar 

  6. N. Hidar, A. Noufid, E.M.E. Adnany, L. Lahnine, A. Idlimam, M. Mouhib, A. Jaouad, M. Mahrouz, Sorption behavior and thermodynamic characteristics of stevia leaves as affected by freeze drying and gamma irradiation technologies. Euro-Mediterr. J. Environ. Integr. 8(1), 179–189 (2023). https://doi.org/10.1007/s41207-023-00346-6

    Article  Google Scholar 

  7. M. Efendi, L.C. Hawa, Y. Wibisono, Hygroscopicity of butterfly-pea under room temperature: effect on sorption and physicochemical properties. World J. Adv. Res. Rev. 18(2), 1395–1405 (2023). https://doi.org/10.30574/wjarr.2023.18.2.0976

    Article  CAS  Google Scholar 

  8. Z.-s Zhang, X.-d Li, H.-j Jia, Y.-l Liu, Moisture sorption isotherms and thermodynamic properties of tiger nuts: an oil-rich tuber. LWT 167(100), 113866 (2022). https://doi.org/10.1016/j.lwt.2022.113866

    Article  CAS  Google Scholar 

  9. M. Al-Khalili, N. Al-Habsi, M. Rahman, Moisture sorption isotherms of whole and fractionated date-pits: measurement and theoretical modelling. Arab. J. Chem. 16(5), 104678 (2023). https://doi.org/10.1016/j.arabjc.2023.104678

    Article  CAS  Google Scholar 

  10. M. Efendi, Y. Hendrawan, L.C. Hawa, B.D. Argo, S.H. Sumarlan, Moisture adsorption isotherms properties of dried overripe barlin fruit (Musa acuminata AA.) powder. World J. Adv. Res. Rev. 18(2), 1386–1395 (2023). https://doi.org/10.30574/wjarr.2023.18.2.0977

    Article  CAS  Google Scholar 

  11. R.M. Santos, C.L. Alves, A. De Noni, M.B. Quadri, S. Heinrich, Moisture sorption isotherm and effective diffusion coefficient of porcelain stoneware spray-dried powder. Powder Technol. 430, 119028 (2023). https://doi.org/10.1016/j.powtec.2023.119028

    Article  CAS  Google Scholar 

  12. L. Hssaini, R. Ouaabou, J. Charafi, A. Idlimam, A. Lamharrar, R. Razouka, H. Hanine, Hygroscopic proprieties of fig (Ficus carica L.): mathematical modelling of moisture sorption isotherms and isosteric heat kinetics. S. Afr. J. Bot. 145, 265–274 (2022). https://doi.org/10.1016/j.sajb.2020.11.026

    Article  CAS  Google Scholar 

  13. L.C. Hawa, M. Efendi, U. Ubaidillah, R. Yulianingsih, Determination and modelling moisture sorption isotherms of dehydrated butterfly-pea (Clitoria ternatea L.) flower powder. IOP Conf. Ser. Earth Environ. Sci. (2021). https://doi.org/10.1088/1755-1315/924/1/012010

    Article  Google Scholar 

  14. T.Y. Chaffa, B.T. Meshesha, S.A. Mohammed, S.A. Jabasingh, Production, characterization, and optimization of starch-based biodegradable bioplastic from waste potato (Solanum tuberosum) peel with the reinforcement of false banana (Ensete ventricosum) fiber. Biomass Convers. Biorefin. (2022). https://doi.org/10.1007/s13399-022-03426-9

    Article  Google Scholar 

  15. A.B.D. Nandiyanto, R. Ragadhita, M. Fiandini, Interpretation of Fourier transform infrared spectra (FTIR): a practical approach in the polymer/plastic thermal decomposition. Indones. J. Sci. Technol. 8(1), 113–126 (2023). https://doi.org/10.17509/ijost.v8i1.53297

    Article  Google Scholar 

  16. A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 4(1), 97–118 (2019). https://doi.org/10.17509/ijost.v4i1.15806

    Article  Google Scholar 

  17. N. Baena-Jurado, L.T. Sanchez, M.I. Pinzon, C.C. Villa, Data from the synthesis and characterization of banana starch nanoparticles from different botanical varieties. Data Br. 37, 107167 (2021). https://doi.org/10.1016/j.dib.2021.107167

    Article  CAS  Google Scholar 

  18. D.H. Tejavathi, B.S. Sujatha, C.S. Karigar, Physicochemical properties of starch obtained from Curcuma karnatakensis—a new botanical source for high amylose content. Heliyon 6(1), e03169 (2020). https://doi.org/10.1016/j.heliyon.2020.e03169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Veeramanipriya, A.R. Umayal Sundari, Performance evaluation of hybrid photovoltaic thermal (PVT) solar dryer for drying of cassava. Sol. Energy 215, 240–251 (2021). https://doi.org/10.1016/j.solener.2020.12.027

    Article  ADS  Google Scholar 

  20. T. Phahom, G. Roudaut, Moisture sorption characteristics and dynamic mechanical thermal analysis of dried petiole and rhizome of red water lily (Nymphaea x rubra). Heat Mass Transf. und Stoffuebertragung 59(2), 309–328 (2023). https://doi.org/10.1007/s00231-022-03258-3

    Article  ADS  Google Scholar 

  21. L.C. Hawa, M. Efendi, U. Ubaidillah, R. Yulianingsih, Determination and modelling moisture sorption isotherms of dehydrated butterfly-pea (Clitoria ternatea L.) flower powder. IOP Conf. Ser. Earth Environ. Sci. (2021). https://doi.org/10.1088/1755-1315/924/1/012010

    Article  Google Scholar 

  22. B.G. Fonyuy, J.G. Tamba, J.Z. Mfomo, A. Fopah-Lele, B.S. Diboma, D.M.M. Bengono, E.F. Fedoung, A.B. Biwole, Moisture desorption isotherms and thermodynamic properties of two dense tropical woods: Tali (Erythrophleum suaveolens Brenan) and Bilinga (Nauclea diderrichii Merr). Eur. J. Wood Wood Prod. 81(3), 733–745 (2023). https://doi.org/10.1007/s00107-022-01907-2

    Article  CAS  Google Scholar 

  23. C. Mutlu, Adsorption isotherms and some thermodynamic properties of multifloral bee pollen at different conditions. Heat Mass Transf. und Stoffuebertragung 59(10), 1921–1929 (2023). https://doi.org/10.1007/s00231-023-03369-5

    Article  ADS  Google Scholar 

  24. D.M.M. Bengono, J.G. Tamba, J.Z. Mfomo, A. Fopah-Lele, B.S. Diboma, F.G. Banyuy, A.B. Biwole, Influence of the anatomical structure on the moisture sorption and thermodynamic properties of the African tropical woods. Heat Mass Transf. und Stoffuebertragung 59(1), 113–130 (2023). https://doi.org/10.1007/s00231-022-03242-x

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was funded by LPDP (Indonesia Endowment Fund for Education). Thanks The Ministry of Finance and LPDP for the support of a doctoral scholarship.

Funding

This study was funded by LPDP (Indonesia Endowment Fund for Education) (Grant No. PD2352023082600125).

Author information

Authors and Affiliations

Authors

Contributions

Author contributed to this study have been included in the manuscript.

Corresponding author

Correspondence to Mohamad Efendi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efendi, M. Modified GAB model of sorption on banana: spreading pressure and Gibbs free energy. Food Measure (2024). https://doi.org/10.1007/s11694-024-02432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02432-x

Keywords

Navigation