Skip to main content
Log in

Counterfeit detection of bulk Baijiu based on fluorescence hyperspectral technology and machine learning

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Baijiu is a unique distilled spirit in China. The bulk Baijiu market has been experiencing issues related to counterfeit and substandard products, raising concerns about food safety. Detecting liquor adulteration is crucial for eliminating fraud in the bulk Baijiu market. In this study, we proposed using fluorescence hyperspectral Technology (FH) combined with machine learning (ML) to detect Baijiu adulteration quickly and non-destructive. Due to the similarity of fluorescence spectral features between adulterated Baijiu and real Baijiu, it was difficult to distinguish them based on the fluorescence feature parameters alone. The data preprocessing methods were used and then principal component analysis (PCA) was adapted. The principal components were used as inputs to ML models to establish the qualitative and quantitative detection models. In the qualitative detection models, the Adaptive Boosting (AdaBoost) model demonstrated the best performance with 98.08% precision, 100% recall and 99.03% F1-score. In the quantitative detection models of adulterations concentration, the AdaBoost model after Wavelet denoising(WDS) processing yielded the best results with R2 of 0.9740 and RMSEP of 0.0247. The results demonstrated that the combination of FH and ML can efficiently detect adulterated bulk Baijiu, showing promising applications and feasibility in the nondestructive detection of adulterated substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw data on which the study is based were accessed from a repository and are available for downloading through the following link. https://github.com/wuyouli123/Baijiu.git

Abbreviations

FH:

Fluorescence hyperspectral technology

ML:

Machine learning

HS-SPME-GC-MS:

Headspace solid-phase microextraction gas chromatography-mass spectrometry

NMR:

Nuclear magnetic resonance technology

PCA:

Principal component analysis

MSC:

Multiplicative scatter correction

WDS:

Wavelet denoising

MSC-WDS:

Multiplicative scatter correction & wavelet denoising

AdaBoost:

Adaptive boosting

XGBoost:

Extreme gradient boosting

RF:

Random forests

EL:

Ensemble learning

References

  1. Y. Xu, B. Sun, G. Fan, C. Teng, K. Xiong, Y. Zhu et al., J. Inst. Brew. 123(1), 5–12 (2017). https://doi.org/10.1002/jib.404

    Article  CAS  Google Scholar 

  2. S. Wei, P. Yin, I.M. Newman, L. Qian, D.F. Shell, L.-W. Yuen, Int. J. Environ. Res. Public Health 14(10), 1099 (2017). https://doi.org/10.3390/ijerph14101099

    Article  PubMed  PubMed Central  Google Scholar 

  3. L. Qian, I.M. Newman, W. Xiong, Y. Feng, BMC Public Health 15(1), 1–11 (2015). https://doi.org/10.1186/s12889-015-2594-4

    Article  Google Scholar 

  4. Q. Kang, J. Sun, B. Wang, B. Sun, Food Sci. Hum. Wellness 12(1), 1–13 (2023). https://doi.org/10.1016/j.fshw.2022.07.013

    Article  CAS  Google Scholar 

  5. I. Newman, L. Qian, N. Tamrakar, Y. Feng, G. Xu, Alcohol. Clin. Exp. Res. 41(1), 207–215 (2017). https://doi.org/10.1111/acer.13280

    Article  CAS  PubMed  Google Scholar 

  6. J. Tang, Y. Liu, B. Lin, H. Zhu, W. Jiang, Q. Yang et al., World J. Microbiol. Biotechnol. 38(1), 3 (2021). https://doi.org/10.1007/s11274-021-03183-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. Jin, Y. Zhu, A. Rinzema, R. Wijffels, Y. Xu, (Springer, 2023). p. 121–142. https://doi.org/10.1007/978-981-19-2195-7_4

  8. H. Lin, H. Chen, C. Yin, Q. Zhang, Z. Li, Y. Shi et al., IEEE Sens. J. 22(12), 11463–11473 (2022). https://doi.org/10.1109/JSEN.2022.3174251

    Article  Google Scholar 

  9. W. Jia, Z. Fan, A. Du, Y. Li, R. Zhang, Q. Shi et al., Food Chem. 324, 126899 (2020). https://doi.org/10.1016/j.foodchem.2020.126899

    Article  CAS  PubMed  Google Scholar 

  10. F. He, H. Yang, L. Zeng, H. Hu, C. Hu, Bioprocess Biosyst. Eng. 43(5), 927–936 (2020). https://doi.org/10.1007/s00449-020-02289-6

    Article  CAS  PubMed  Google Scholar 

  11. S. Xiao, Y. He, Int. J. Mol. Sci. 20(11), 2722 (2019). https://doi.org/10.3390/ijms20112722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. Huang, X. Hu, J. Tian, P. Chen, D. Huang, J. Food Process Eng 44(3), e13633 (2021). https://doi.org/10.1111/jfpe.13633

    Article  CAS  Google Scholar 

  13. Z. Kang, J. Geng, R. Fan, Y. Hu, J. Sun, Y. Wu et al., Agriculture 12(9), 1337 (2022). https://doi.org/10.3390/agriculture12091337

    Article  Google Scholar 

  14. Q. Zhuang, Y. Peng, D. Yang, Y. Wang, R. Zhao, K. Chao et al., J. Food Eng. 316, 110840 (2022). https://doi.org/10.1016/j.jfoodeng.2021.110840

    Article  CAS  Google Scholar 

  15. X. Zhou, J. Sun, Y. Tian, K. Yao, M. Xu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 266, 120460 (2022). https://doi.org/10.1016/j.saa.2021.120460

    Article  CAS  Google Scholar 

  16. Z. Zou, Q. Wu, J. Wang, M. Zhou, Z. Lu, Y. He et al., Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 284, 121785 (2023). https://doi.org/10.1016/j.saa.2022.121785

    Article  CAS  Google Scholar 

  17. Y. Hu, Z. Kang, Molecules 27(4), 1196 (2022). https://doi.org/10.3390/molecules27041196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Sádecká, M. Jakubíková, P. Májek, Food Control 88, 75–84 (2018). https://doi.org/10.1016/j.foodcont.2017.12.033

    Article  CAS  Google Scholar 

  19. I.M. Newman, L. Qian, N. Tamrakar, Y. Feng, G. Xu, Int. J. Alcohol Drug Res. 6(1), 59–67 (2017). https://doi.org/10.7895/ijadr.v6i1.236

    Article  Google Scholar 

  20. Y. Hu, L. Xu, P. Huang, X. Luo, P. Wang, Z. Kang, Agriculture 11(11), 1106 (2021). https://doi.org/10.3390/agriculture11111106

    Article  Google Scholar 

  21. M. Zhu, D. Huang, X.J. Hu, W.H. Tong, B.L. Han, J.P. Tian et al., Food Sci. Nutr. 8(10), 5206–5214 (2020). https://doi.org/10.1002/fsn3.1852

    Article  PubMed  PubMed Central  Google Scholar 

  22. X. Jiang, Y. Xie, D. Wan, M. Chen, F. Zheng, Anal. Chim. Acta 1059, 36–41 (2019). https://doi.org/10.1016/j.aca.2019.01.050

    Article  CAS  PubMed  Google Scholar 

  23. J. Xu, H. Yuan, H. Zhou, Y. Zhao, Y. Wu, J. Zhang et al., Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 284, 121787 (2023). https://doi.org/10.1016/j.saa.2022.121787

    Article  CAS  Google Scholar 

  24. J. Kang, Y. Sun, X. Huang, L. Ye, Y. Chen, X. Chen et al., Food Res. Int. 157, 111320 (2022). https://doi.org/10.1016/j.foodres.2022.111320

    Article  CAS  PubMed  Google Scholar 

  25. C. Wang, Z. Shi, H. Shen, Y. Fang, S. He, H. Bi, J. Food Compos. Anal. 118, 105217 (2023). https://doi.org/10.1016/j.jfca.2023.105217

    Article  CAS  Google Scholar 

  26. Q. Chen, Z. Hui, J. Zhao, Q. Ouyang, LWT Food Sci. Technol. 57(2), 502–507 (2014). https://doi.org/10.1016/j.lwt.2014.02.031

    Article  CAS  Google Scholar 

  27. F. Dong, J. Hao, R. Luo, Z. Zhang, S. Wang, K. Wu et al., Comput. Electron. Agric. 198, 107027 (2022). https://doi.org/10.1016/j.compag.2022.107027

    Article  Google Scholar 

  28. M. Laidi, S. Hanini, Int. J. Refrig. 36(1), 247–257 (2013). https://doi.org/10.1016/j.ijrefrig.2012.09.016

    Article  Google Scholar 

  29. T. Pradhan, P. Ghoshal, R. Biswas, J. Chem. Sci. 120, 275–287 (2008). https://doi.org/10.1007/s12039-008-0033-0

    Article  CAS  Google Scholar 

  30. X.-Y. Guo, T. Watermann, D. Sebastiani, J. Phys. Chem. B 118(34), 10207–10213 (2014). https://doi.org/10.1021/jp505203t

    Article  CAS  PubMed  Google Scholar 

  31. Y. Fan, L. Zhang, J. Jia, H. Chen, H. Fu, Y. She, Sens. Actuators B: Chem. 319, 128260 (2020). https://doi.org/10.1016/j.snb.2020.128260

    Article  CAS  Google Scholar 

  32. X.-Q. Jia, Y. Li, L. Zhang, Y. Wu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 271, 120856 (2022). https://doi.org/10.1016/j.saa.2022.120856

    Article  CAS  Google Scholar 

  33. Y.C. Liu, G.D. Lu, J.H. Zhou, J.W. Rong, H.Y. Liu, H.Y. Wang, RSC Adv. 12(12), 7405–7412 (2022). https://doi.org/10.1039/d1ra08392a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the subject double support program of Sichuan Agricultural University (Grant NO. 035-1921993093).

Author information

Authors and Affiliations

Authors

Contributions

YW: Conceptualization; Resources; Software; Formal analysis; Writing—review and editing Visualization; Roles/Writing—original draft; ZK: Funding acquisition; Supervision; XL: Methodology; RF: Validation; LY: Data curation; CZ: Investigation; LX: Project administration.

Corresponding author

Correspondence to Zhiliang Kang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Li, X., Xu, L. et al. Counterfeit detection of bulk Baijiu based on fluorescence hyperspectral technology and machine learning. Food Measure 18, 3032–3041 (2024). https://doi.org/10.1007/s11694-024-02384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02384-2

Keywords

Navigation