Skip to main content
Log in

Detection and recognition of tea buds by integrating deep learning and image-processing algorithm

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The accurate detection of tea buds is a crucial foundation for achieving intelligent plucking of tea. However, in unstructured environments, the detection of these minuscule buds with extreme length-to-width ratios poses a significant challenge. In this study, a method was developed for the detection of tea buds in complex environments. At first, the YOLOv5s_DCV model was developed based on the YOLOv5s network model, which incorporates advanced techniques such as Deformable ConvNets V2, Content-Aware ReAssembly of Features, and Varifocal Loss, considering both efficiency and accuracy. Besides, we used image processing methods to reduce the model’s sensitivity to changes in lighting conditions. The experimental results demonstrated that our method achieves impressive precision with an average precision (AP) of 90.6%, surpassing mainstream object detection methods. This study holds paramount theoretical and practical significance, offering robust support for the accurate detection and precise localization of tea buds, as well as phenotype identification and the accurate estimation of tea leaf yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data are available from the corresponding author, upon reasonable request.

References

  1. S.Y. Pan, Q. Nie, H.C. Tai, X.L. Song, Y.F. Tong, L.J.F. Zhang, X.W. Wu, Z.H. Lin, Y.Y. Yu, D.Y. Ye, Y. Zhang, X.Y. Wang, P.L. Zhu, Z.S. Chu, Z.L. Yu, C. Liang, Tea and tea drinking: China’s outstanding contributions to the mankind. Chin. Med. 17(1), 1–40 (2022)

    Article  Google Scholar 

  2. FAO, International tea market: market situation, prospects and emerging issues (2022), https://www.fao.org/3/cc0238en/cc0238en.pdf. Accessed 6 Apr 2023

  3. J.E. Lee, B.J. Lee, J.O. Chung, H.N. Kim, E.H. Kim, S. Jung, H. Lee, Y.S. Hong, Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chem. 174, 452–459 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. C.W. Dong, H.K. Zhu, J.W. Zhao, Y.W. Jiang, H.B. Yuan, Q.S. Chen, Sensory quality evaluation for appearance of needle-shaped green tea based on computer vision and nonlinear tools. J. Zhejiang Univ. Sci. B 18(6), 544 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Y.T. Li, S.K. Wu, L.Y. He, J.H. Tong, R.M. Zhao, J.M. Jia, J.N. Chen, C.Y. Wu, Development and field evaluation of a robotic harvesting system for plucking high-quality tea. Comput. Electron. Agric. 206, 107659 (2023)

    Article  Google Scholar 

  6. W.K. Xu, L.G. Zhao, J. Li, S.Q. Shang, X.P. Ding, T.W. Wang, Detection and classification of tea buds based on deep learning. Comput. Electron. Agric. 192, 106547 (2022)

    Article  Google Scholar 

  7. Z. Gui, J. Chen, Y. Li, Z. Chen, C. Wu, C. Dong, A lightweight tea bud detection model based on YOLOv5. Comput. Electron. Agric. 205, 107636 (2023)

    Article  Google Scholar 

  8. F.Z. Yang, L.L. Yang, Y.N. Tian, Q. Yang, Tea tender shoot identification method based on color and shape features. Trans. Chin. Soc. Agric. Mach. 40(S1), 119–123 (2009)

    Google Scholar 

  9. J. Wang, Study on tea image segmentation algorithm based on color and regional growth. Tea Sci. 31(01), 72–77 (2011)

    Google Scholar 

  10. X.M. Wu, X. Tang, F.G. Zhang, J.M. Gu, Tea buds image identification based on lab color model and K-means clustering. J. Chin. Agric. Mech. 36, 161–164 (2015)

    CAS  Google Scholar 

  11. Y.P. Tang, W.M. Han, A.G. Hu, W.Y. Wang, Design and experiment of intelligentized tea-plucking machine for human riding based on machine vision. Nongye Jixie Xuebao 47(7), 15–20 (2016)

    Google Scholar 

  12. G.M.K.B. Karunasena, H.D.N.S. Priyankara, Tea bud leaf identification by using machine learning and image processing techniques. Int. J. Sci. Eng. Res. 11(8), 624–628 (2020)

    Google Scholar 

  13. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. C.Q. Wang, B. Zhang, Y. Cao, M.X. Sun, K.Y. He, Z.H. Cao, M. Wang, Mask detection method based on YOLO-GBC network. Electronics 12(2), 408 (2023)

    Article  Google Scholar 

  15. Y.T. Chen, S.F. Chen, Localizing plucking points of tea leaves using deep convolutional neural networks. Comput. Electron. Agric. 171, 105298 (2020)

    Article  Google Scholar 

  16. T. Wang, K.M. Zhang, W. Zhang, R.Q. Wang, S.M. Wan, Y. Rao, Z.H. Jiang, L.C. Gu, Tea picking point detection and location based on Mask-RCNN. Inf. Process. Agric. 10(2), 267–275 (2023)

    CAS  Google Scholar 

  17. J.C. Huang, A. Tang, G.M. Chen, D. Zhang, F.Z. Gao, T. Chen, Tea shoot mobile recognition scheme based on compact-YOLO v4 algorithm. Trans. Chin. Soc. Agric. Mach. 54(03), 282–290 (2019)

    Google Scholar 

  18. Z.Y. Wan, Y.M. Chen, S.T. Deng, K.P. Chen, C. Yao, J.B. Luo, Slender object detection: diagnoses and improvements (2020), arXiv Preprint at https://arxiv.org/2011.08529

  19. X.Z. Zhu, H. Hu, S. Lin, J.F. Dai, Deformable ConvNets v2: more deformable, better results. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019), pp. 9308–9316

  20. J.Q. Wang, K. Chen, R. Xu, Z.W. Liu, C.C. Loy, D.H. Lin, CARAFE: content-aware reassembly of features, in Proceedings of the IEEE/CVF International Conference on Computer Vision (2019), pp. 3007–3016

  21. H.Y. Zhang, Y. Wang, F. Dayoub, N. Sunderhauf, VarifocalNet: an IoU-aware dense object detector, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 8514–8523

  22. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  PubMed  Google Scholar 

  23. P. Babakhani, P. Zarei, Automatic gamma correction based on average of brightness. Adv. Comput. Sci. Int. J. 4(6), 156–159 (2015)

    Google Scholar 

  24. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, A.C. Berg, SSD: single shot multibox detector, in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (Springer International Publishing, 2016), pp. 21–37

  25. J. Redmon, A. Farhadi, YOLOv3: an incremental improvement (2018), arXiv Preprint at https://arxiv.org/1804.02767

  26. A. Bochkovskiy, C.Y. Wang, H.Y.M. Liao, YOLOv4: optimal speed and accuracy of object detection (2020), arXiv Preprint at https://arxiv.org/2004.10934

  27. Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, YOLOX: exceeding YOLO series in 2021 (2021), arXiv Preprint at https://arxiv.org/abs/2107.08430

  28. C.Y. Wang, A. Bochkovskiy, H.Y.M. Liao, YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023), pp. 7464–7475

  29. G. Jocher, A. Chaurasia, J. Qiu, YOLO by Ultralytics (2023), https://github.com/ultralytics/ultralytics. Accessed 30 Feb 2023

  30. X. Wang, G.Y. Chen, G.W. Qian, P.C. Gao, X.Y. Wei, Y.W. Wang, Y.H. Tian, W. Gao, Large-scale multi-modal pre-trained models: a comprehensive survey. Mach. Intell. Res. (2023). https://doi.org/10.1007/s11633-022-1410-8

    Article  Google Scholar 

  31. Z.Z. Han, J. Li, L.M. Deng, A tea artificial intelligence picking robot, Patent No. CN202020364346.0, 2022

  32. Z. Guo, C. Wang, G. Yang, Z. Huang, G. Li, MSFT-YOLO: improved YOLOv5 based on transformer for detecting defects of steel surface. Sensors 22(9), 3467 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. H.Y. Zhu, X.H. Zhang, X.F. Li, Q. Shi, S.B. Wang, Research on tablet crack detection algorithm based on improved YOLOv5, in International Conference in Communications, Signal Processing, and Systems (Springer Nature Singapore, Singapore, 2022), pp. 68–75

  34. J. Lü, M.R. Fang, Q. Yao, C.Y. Wu, Y.L. He, L. Bian, X.Y. Zhong, Tea tender shoot detection model based on regional brightness adaptive correction. Trans. Chin. Soc. Agric. Eng. 37(22), 278–285 (2021)

    Google Scholar 

  35. J. Liao, Y. Wang, D.Q. Zhu, Y. Zou, S. Zhang, H.Y. Zhou, Automatic segmentation of crop/background based on luminance partition correction and adaptive threshold. IEEE Access 8, 202611–202622 (2020)

    Article  Google Scholar 

  36. Z. Zhou, J.J. Zhang, C.J. Gong, Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once network. Comput. Aided Civ. Infrastruct. Eng. 37(6), 762–780 (2022)

    Article  Google Scholar 

  37. L. Comba, A. Biglia, D.R. Aimonino, P. Gay, Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture. Comput. Electron. Agric. 155, 84–95 (2018)

    Article  Google Scholar 

  38. G.C. Lin, Y.C. Tang, X.J. Zou, J.H. Li, J.T. Xiong, In-field citrus detection and localization based on RGB-D image analysis. Biosyst. Eng. 186, 34–44 (2019)

    Article  Google Scholar 

  39. Y.T. Li, L.Y. He, J.M. Jia, J. Lv, J.N. Chen, X. Qiao, C.Y. Wu, In-field tea shoot detection and 3D localization using an RGB-D camera. Comput. Electron. Agric. 185, 106149 (2021)

    Article  Google Scholar 

  40. J.M. Jurado, A. López, L. Pádua, J.J. Sousa, Remote sensing image fusion on 3D scenarios: a review of applications for agriculture and forestry. Int. J. Appl. Earth Obs. Geoinf. 112, 102856 (2022)

    Google Scholar 

  41. Y.L. Li, X.H. Zhan, S.Y. Liu, H. Lu, R.B. Jiang, W. Guo, S. Chapman, Y.F. Ge, B.E. Solan, Y.F. Ding, F. Baret, Self-supervised plant phenotyping by combining domain adaptation with 3D plant model simulations: application to wheat leaf counting at seedling stage. Plant Phenomics 5, 0041 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  42. S.S. Pokharel, H. Yu, W. Fang, M.N. Parajulee, F. Chen, Intercropping cover crops for a vital ecosystem service: a review of the biocontrol of insect pests in tea agroecosystems. Plants 12(12), 2361 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y.T. Li, L.Y. He, J.M. Jia, J.N. Chen, J. Lyu, C.Y. Wu, High-efficiency tea shoot detection method via a compressed deep learning model. Int. J. Agric. Biol. Eng. 15(3), 159–166 (2022)

    Google Scholar 

  44. X.C. Zhang, Z.M. Wu, C.M. Cao, K. Luo, K. Qin, Y.Y. Huang, J. Cao, Design and operation of a deep-learning-based fresh tea-leaf sorting robot. Comput. Electron. Agric. 206, 107664 (2023)

    Article  Google Scholar 

  45. Y.L. Lai, P.L. Chen, T.C. Su, W.Y. Hwang, S.F. Chen, P.L. Yen, A collaborative robot for tea harvesting with adjustable autonomy. Cybern. Syst. 53(1), 4–22 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31872849), National Key Research and Development Program of China (2021YFA10000102-3; 2021YFA10000102-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shudong Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, S., Pang, S. et al. Detection and recognition of tea buds by integrating deep learning and image-processing algorithm. Food Measure 18, 2744–2761 (2024). https://doi.org/10.1007/s11694-023-02351-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02351-3

Keywords

Navigation