Skip to main content
Log in

Influence of microencapsulated Streptococcus thermophilus ST-HSTU-FPP and Limosilactobacillus fermentum LS-HSTU-FPP strains on biochemical features of yogurt following in-vitro simulated gastrointestinal conditions

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Microencapsulated starter cultures with known probiotic strains demonstrate significant effectiveness to be utilized in developing functional yogurt whereas conventional starter cultures comprising unknown strains exhibit their inability to survive in the yogurt. The current study intended to formulate probiotic yogurts with Streptococcus thermophilus ST-HSTU-FPP and Limosilactobacillus fermentum LS-HSTU-FPP strains encapsulated with whey protein, maltodextrin: gum Arabic and maltodextrin: whey protein: gum Arabic, as well as assess their effects on biochemical properties, mineral content, viability under simulated gastrointestinal conditions, and sensorial attributes. There was no significant (p ≤ 0.05) difference in pH, total soluble solid, water holding capacity, and syneresis between the yogurt prepared with encapsulated and conventional starter culture. The yogurt made with conventional starter culture had the lowest survival rate (5 log CFU/g) while all of the yogurt with encapsulated probiotics showed above 6 log CFU/g after 180 min in both the simulated gastric juice and intestinal juice conditions. Yogurt comprising probiotics encapsulated with maltodextrin, whey protein, and gum Arabic had the highest protein content (5.63%), calcium (9835.7 mg/kg), and magnesium (1874.6 mg/kg), while the probiotics encapsulated with maltodextrin and gum Arabic had the lowest protein (4.81%), calcium (2353.0 mg/kg), and magnesium (743.3 mg/kg). Conclusively, probiotics encapsulated with maltodextrin: whey protein: gum Arabic might be recommended for the commercial preparation of probiotic yogurt having viable functional food properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data is available on request.

References

  1. I. Rowland, G. Gibson, A. Heinken, K. Scott, J. Swann, I. Thiele, K. Tuohy, Eur. J. Nutr. 57(1), 1–24 (2018). https://doi.org/10.1007/s00394-017-1445-8

    Article  CAS  PubMed  Google Scholar 

  2. S. Sarkar, Nutr. Food Sci. (2013). https://doi.org/10.1108/00346651311313445

    Article  Google Scholar 

  3. Codex Alimentarius, Codex-standard 243–2003: codex standard for fermented milks (2003). http://www.codexalimentarius.net/input/download/standards/400/CXS_243e.pdf. Accessed 7 Apr 2013

  4. N.F. Fazilah, N.H. Hamidon, A.B. Ariff, M.E. Khayat, H. Wasoh, M. Halim, Molecules 24(7), 1422 (2019). https://doi.org/10.3390/molecules24071422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Maleki, P.M. Ariaii, Sharifi, Soltani, Food Sci. Nutr. 9(7), 343 (2021). https://doi.org/10.1002/fsn3.2250

    Article  CAS  Google Scholar 

  6. D.M. Linares, T.F. O’Callaghan, P.M. O’Connor, R.P. Ross, C. Stanton, Front. Microbiol. 7, 1876 (2016). https://doi.org/10.3389/fmicb.2016.01876

    Article  PubMed  PubMed Central  Google Scholar 

  7. C. Leylak, K.S. Özdemir, G.C. Gurakan, Z.B. Ogel, Int. Dairy J. 112, 104865 (2021). https://doi.org/10.1016/j.idairyj.2020.104865

    Article  CAS  Google Scholar 

  8. T.S. Oberg, D.J. McMahon, M.D. Culumber, O. McAuliffe, C.J. Oberg, J. Dairy Sci. 105(4), 2750–2770 (2022). https://doi.org/10.3168/jds.2021-21138

    Article  CAS  PubMed  Google Scholar 

  9. S.M. Lim, N.K. Lee, K.T. Kim, H.D. Paik, Microb. Pathog. 147, 104430 (2020). https://doi.org/10.1016/j.micpath.2020.104430

    Article  CAS  PubMed  Google Scholar 

  10. S. Mahmud, S. Khan, M.R. Khan, J. Islam, U.K. Sarker, G.A. Hasan, M. Ahmed, J. Food Process. Preserv. 46(11), e17123 (2022). https://doi.org/10.1111/jfpp.17123

    Article  CAS  Google Scholar 

  11. M. Afzaal, A.U. Khan, F. Saeed, A. Ahmed, M.H. Ahmad, A.A. Maan, T. Tufail, F.M. Anjum, S. Hussain, Food Sci. Nutr. 7(12), 3931–3940 (2019). https://doi.org/10.1002/fsn3.1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. Soni, N.K. Jain, V. Shah, J. Soni, D. Suthar, P. Gohel, J. Food Sci. Technol. 57(6), 2038–2050 (2020). https://doi.org/10.1007/s13197-020-04238-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. AOAC, Official Methods of Analysis, 18th edn. (Association of Officiating Analytical Chemists, Washington, DC, 2005)

  14. I. Rybicka, A. Gliszczyńska-Świgło, J. Food Compos. Anal. 59, 61–67 (2017). https://doi.org/10.1016/j.jfca.2017.02.006

    Article  CAS  Google Scholar 

  15. M. Afzaal, F. Saeed, M. Saeed, M. Azam, S. Hussain, A.A. Mohamed, F.M. Anjum, Int. J. Food Prop. 23(1), 1899–1912 (2020). https://doi.org/10.1080/10942912.2020.1826513

    Article  CAS  Google Scholar 

  16. O.S.F. Khalil, H.A. Ismail, W.F. Elkot, J. Food Sci. Technol. 59, 3700–3710 (2022). https://doi.org/10.1007/s13197-022-05393-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. U. Purwandari, N.P. Shah, T. Vasiljevic, Int. Dairy J. 17(11), 1344–1352 (2007). https://doi.org/10.1016/j.idairyj.2007.01.018

    Article  CAS  Google Scholar 

  18. S. Ahluwalia, P. Kumar, J. Food Process. Technol. (2013). https://doi.org/10.4172/2157-7110.1000239

    Article  Google Scholar 

  19. E.C. Ale, M.J. Perezlindo, Y. Pavón, G.H. Peralta, S. Costa, N. Sabbag, C. Bergamini, J.A. Reinheimer, A.G. Binetti, Food Res. Int. 90, 259–267 (2016). https://doi.org/10.1017/S0022029916000571

    Article  CAS  PubMed  Google Scholar 

  20. Y.S. Bhullar, M.A. Uddin, N.P. Shah, Milchwissenschaft 57, 328–332 (2002)

    CAS  Google Scholar 

  21. H.I. Ali, M. Dey, A.K. Alzubaidi, S.J.A. Alneamah, A.B. Altemimi, A. Pratap-Singh, Foods 10(10), 2393 (2021). https://doi.org/10.3390/foods10102393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. K.S. Matela, M.K. Pillai, P. Matebesi-Ranthimo, M. Ntakatsane, J. Food Nutr. Res. 2(3), 245–252 (2019). https://doi.org/10.26502/jfsnr.2642-11000023

    Article  Google Scholar 

  23. H.J. Jang, J. Jung, H.S. Yu, N.K. Lee, H.D. Paik, Korean J. Food Sci. Anim. Resour. 38(6), 1160 (2018). https://doi.org/10.5851/kosfa.2018.e47

    Article  PubMed  PubMed Central  Google Scholar 

  24. Y. Le Graët, G. Brulé (1993), https://agris.fao.org/agrissearch/search.do?recordID=FR9303661

  25. A. Chawafambira, M.M. Sedibe, A. Mpofu, M. Achilonu, Int. J. Food Sci. (2020). https://doi.org/10.1155/2020/8831694

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Navarro-Alarcón, C. Cabrera-Vique, M.D. Ruiz-López, M. Olalla, R. Artacho, R. Giménez, V. Quintana, T. Bergillos, Food Chem. 129(3), 1126–1131 (2011). https://doi.org/10.1016/j.foodchem.2011.05.090

    Article  CAS  PubMed  Google Scholar 

  27. J. Mrvčić, A. Butorac, E. Šolić, D. Stanzer, V. Bačun-Družina, M. Cindrić, V. Stehlik-Tomas, World J. Microbiol. Biotechnol. 29(1), 75–85 (2013). https://doi.org/10.1007/s11274-012-1160-9

    Article  CAS  PubMed  Google Scholar 

  28. K. Skrypnik, J. Suliburska, J. Sci. Food Agric. 98(7), 2449–2460 (2018). https://doi.org/10.1002/jsfa.8724

    Article  CAS  PubMed  Google Scholar 

  29. FAO/WHO, 85 (2006), https://agris.fao.org/agrissearch/search.do?recordID=XF2007431319

  30. W. Krasaekoopt, B. Bhandari, H. Deeth, Int. Dairy J. 13, 3–13 (2003). https://doi.org/10.1016/S0958-6946(02)00155-3

    Article  CAS  Google Scholar 

  31. W. Qi, X. Liang, T. Yun, W. Guo, J. Food Sci. Technol. 56(3), 1398–1404 (2019). https://doi.org/10.1007/s13197-019-03616-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Khorshidi, A. Heshmati, M. Taheri, M. Karami, R. Mahjub, Food Sci. Nutr. 9(7), 3942–3953 (2021). https://doi.org/10.1002/fsn3.2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. E.S.H. Atwaa, M.R. Shahein, E.S.A. El-Sattar, H.H.A. Hijazy, A. Albrakati, E.K. Elmahallawy, Fermentation 8(2), 52 (2022). https://doi.org/10.3390/fermentation8020052

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maruf Ahmed.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.R., Khan, S., Islam, J. et al. Influence of microencapsulated Streptococcus thermophilus ST-HSTU-FPP and Limosilactobacillus fermentum LS-HSTU-FPP strains on biochemical features of yogurt following in-vitro simulated gastrointestinal conditions. Food Measure 18, 1229–1236 (2024). https://doi.org/10.1007/s11694-023-02224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02224-9

Keywords

Navigation