Skip to main content
Log in

Effects of microwave drying on color change, phenolic substance content and phenolase activity of different parts of persimmon slices

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study investigates the effect of microwave drying on the color change of different parts of persimmon slices, focusing on the mechanism of enzymatic browning. The samples were partitioned in two directions, the vertical group was divided into three parts from the top to the bottom: A, B and C, and the horizontal group was divided into two parts from the outside to the inside: 1 and 2. The color, the contents of total phenols, soluble tannins, total flavonoids, and the activities of PPO and POD in six parts were investigated under different drying conditions, and correlation and cluster analysis were performed. The results exhibited that PPO and POD were both inactivated under various drying conditions. The contents of total phenols, soluble tannins and total flavonoids in different parts increased with the increase of microwave power and drying time and the decrease of loading amount. When the microwave power was 560 W and loading amount was 1.8 kg/m2, the contents of total phenols, soluble tannins and total flavonoids reached the maximum in part B2. However, the contents of three phenols reached the maximum in part C1 when the drying time was 15 min, which were 14.47 mg GAE/g, 11.72 mg GAE/g, and 16.56 mg RE/g, respectively. Correlation and cluster analysis showed that the color darkening in different parts of persimmon slices was negatively correlated with the content of total flavonoids, the enzymatic browning might be more difficult in part B than in parts A and C, and the color change occurred first in part B2 and spread from inside to outside, which might have little relationship with enzymatic browning during the drying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  1. Y. Liang, W. Han, P. Sun, J. Liang, T. Wuyun, F. Li, J. Fu, Sci. Hortic. (Amsterdam) 186, 180 (2015). https://doi.org/10.1016/j.scienta.2015.02.015

    Article  Google Scholar 

  2. J.H. Kim, I.K. Chung, H.Y. Kim, K.M. Kim, Food Sci. Nutr. 6, 1991 (2018). https://doi.org/10.1002/fsn3.673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J.M. Łechtańska, J. Szadzińska, S.J. Kowalski, Chem. Eng. Process. Process Intensif. 98, 155 (2015). https://doi.org/10.1016/j.cep.2015.10.001

    Article  CAS  Google Scholar 

  4. G. Dadali, D.K. Apar, B. Özbek, Dry. Technol. 25, 1445 (2007). https://doi.org/10.1080/07373930701536767

    Article  Google Scholar 

  5. M. Aamir, W. Boonsupthip, J. Food Sci. Technol. 54, 1239 (2017). https://doi.org/10.1007/s13197-017-2546-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Y. Zhao, Y. Jiang, B. Zheng, W. Zhuang, Y. Zheng, Y. Tian, Food Chem. 228, 167 (2017). https://doi.org/10.1016/j.foodchem.2017.01.141

    Article  CAS  PubMed  Google Scholar 

  7. X. Duan, W.C. Liu, G.Y. Ren, L.L. Liu, Y.H. Liu, Dry. Technol. 34, 1373 (2016). https://doi.org/10.1080/07373937.2015.1117487

    Article  CAS  Google Scholar 

  8. Q. Xu, H. Pan, Y. Shui, Y. Xing, L. Wu, F. Zheng, X. Fan, X. Bi, J. Food Sci. (2022). https://doi.org/10.1111/1750-3841.16194

    Article  PubMed  Google Scholar 

  9. Z. Wei, Z. Duan, X. Tang, Y. Qin, S. Zhou, W. Duan, Y. Liu, J. Food Meas. Charact. 16, 1744 (2022). https://doi.org/10.1007/s11694-021-01273-2

    Article  Google Scholar 

  10. Z. Wei, Z. Duan, X. Tang, Y. Qin, S. Zhou, W. Duan, Y. Liu, Mod. Food Sci. Technol. (2022). https://doi.org/10.13982/j.mfst.1673-9078.2022.3.0620

    Article  Google Scholar 

  11. X. Tang, W. Tang, A. Ren, Z. Wei, Z. Chen, Z. Duan, Mod. Food Sci. Technol. 38, 185 (2022). https://doi.org/10.13982/j.mfst.1673-9078.2022.11.0022

    Article  CAS  Google Scholar 

  12. Y. Pan, Z. Duan, J. Zhong, Sci. Technol. Food Ind. 42, 33 (2021). https://doi.org/10.13386/j.issn1002-0306.2020110006

    Article  CAS  Google Scholar 

  13. X. Tang, J. Zheng, A. Ren, Z. Duan, Z. Wei, Y. Qin, H. Fu, Food Mach. 38, 141 (2022). https://doi.org/10.13652/j.issn.1003-5778.2022.01.022

    Article  Google Scholar 

  14. Y. Qin, Z. Duan, Z. Wei, S. Zhou, D. Weiwen, Food Sci. Technol. 45, 53 (2020). https://doi.org/10.13684/j.cnki.spkj.2020.12.008

    Article  CAS  Google Scholar 

  15. Y. Qin, Z. Duan, Z. Wei, S. Zhou, X. Tang, Food Mach. 37, 1 (2021). https://doi.org/10.13652/j.issn.1003-5788.2021.10.001

    Article  CAS  Google Scholar 

  16. Z.Y. Li, R.F. Wang, T. Kudra, Dry. Technol. 29, 652 (2011). https://doi.org/10.1080/07373937.2010.521963

    Article  Google Scholar 

  17. J. Yu, J. Zhao, H. Chen, X. Xia, Z. Cui, Acta Agric. Zhejianggensis 30, 656 (2018). https://doi.org/10.3969/j.issn.1004-1524.2018.04.18

    Article  Google Scholar 

  18. J.W. Dai, H.W. Xiao, L.H. Zhang, M.Y. Chu, W. Qin, Z.J. Wu, D.D. Han, Y.L. Li, Y.W. Liu, P.F. Yin, J. Food Process Eng 42, 1 (2019). https://doi.org/10.1111/jfpe.13212

    Article  Google Scholar 

  19. T. Shadordizadeh, E. Mahdian, M.A. Hesarinejad, Food Sci. Nutr. 11, 1940 (2023). https://doi.org/10.1002/fsn3.3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M.A. Tessmer, R.A. Kluge, B. Appezzato-Da-Glória, Sci. Hortic. (Amsterdam) 172, 292 (2014). https://doi.org/10.1016/j.scienta.2014.04.023

    Article  CAS  Google Scholar 

  21. S. Izcara, R. Perestrelo, S. Morante-Zarcero, J.S. Câmara, I. Sierra, Food Chem. 393, 1 (2022). https://doi.org/10.1016/j.foodchem.2022.133371

    Article  CAS  Google Scholar 

  22. T.G. Abedelmaksoud, M.A. Hesarinejad, B.S. Yancheshmeh, J. Res. Innov. Food Sci. Technol. 10, 341 (2021). https://doi.org/10.22101/JRIFST.2021.247462.1183

    Article  Google Scholar 

  23. F. Rezagholi, M.A. Hesarinejad, Procedia Comput. Sci. 120, 325 (2017). https://doi.org/10.1016/j.procs.2017.11.246

    Article  Google Scholar 

  24. S. Kayacan, S. Karasu, P.K. Akman, H. Goktas, I. Doymaz, O. Sagdic, LWT 118, 108830 (2020). https://doi.org/10.1016/j.lwt.2019.108830

    Article  CAS  Google Scholar 

  25. M. Zielinska, D. Zielinska, LWT 104, 202 (2019). https://doi.org/10.1016/j.lwt.2019.01.041

    Article  CAS  Google Scholar 

  26. M.L. Castelló, A. Heredia, E. Domínguez, M.D. Ortolá, J. Tarrazó, Food Chem. 128, 323 (2011). https://doi.org/10.1016/j.foodchem.2011.03.023

    Article  CAS  PubMed  Google Scholar 

  27. K. An, D. Zhao, Z. Wang, J. Wu, Y. Xu, G. Xiao, Food Chem. 197, 1292 (2016). https://doi.org/10.1016/j.foodchem.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  28. Hamid, N.S. Thakur, A. Thakur, P. Kumar, Sci. Hortic. (Amsterdam) 274, 109656 (2020). https://doi.org/10.1016/j.scienta.2020.109656

    Article  CAS  Google Scholar 

  29. Z. Zhang, Y. Li, C. Liu, Z. Yan, Y. Zhu, Y. Zhang, Y. Zhao, X. Zheng, Food Sci. 41, 230 (2020). https://doi.org/10.7506/spkx1002-6630-20190515-156

    Article  Google Scholar 

  30. S.N. Lou, Y.C. Lai, J. De Huang, C.T. Ho, L.H.A. Ferng, Y.C. Chang, Food Chem. 171, 356 (2015). https://doi.org/10.1016/j.foodchem.2014.08.119

    Article  CAS  PubMed  Google Scholar 

  31. C.M. González, E. Llorca, A. Quiles, I. Hernando, G. Moraga, LWT (2022). https://doi.org/10.1016/j.lwt.2021.112961

    Article  Google Scholar 

  32. O.V. Nistor, L. Seremet, D.G. Andronoiu, L. Rudi, E. Botez, Food Chem. 236, 59 (2017). https://doi.org/10.1016/j.foodchem.2017.04.129

    Article  CAS  PubMed  Google Scholar 

  33. Y. Qin, Z. Duan, S. Zhou, Z. Wei, Food Sci. Technol. (2022). https://doi.org/10.1590/fst.37422

    Article  Google Scholar 

  34. M. Zhou, J. Chen, J. Bi, X. Li, G. Xin, Food Chem. 366, 130632 (2022). https://doi.org/10.1016/j.foodchem.2021.130632

    Article  CAS  PubMed  Google Scholar 

  35. M.M. Özcan, F. Al Juhaimi, I.A.M. Ahmed, N. Uslu, E.E. Babiker, K. Ghafoor, J. Food Sci. Technol. 57, 233 (2020). https://doi.org/10.1007/s13197-019-04052-6

    Article  CAS  PubMed  Google Scholar 

  36. L. Zhou, W. Liu, L. Zou, Z. Xiong, X. Hu, J. Chen, Food Chem. 214, 423 (2017). https://doi.org/10.1016/j.foodchem.2016.07.041

    Article  CAS  PubMed  Google Scholar 

  37. A. Iqbal, A. Murtaza, Z. Muhammad, A.E. Elkhedir, M. Tao, X. Xu, Molecules (2018). https://doi.org/10.3390/molecules23071743

    Article  PubMed  PubMed Central  Google Scholar 

  38. H.S. Chung, D.H. Kim, H.S. Kim, Y.G. Lee, J.H. Seong, K.S. Youn, K.D. Moon, Food Sci. Biotechnol. 26, 401 (2017). https://doi.org/10.1007/s10068-017-0055-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Çelen, Foods 8, 7 (2019). https://doi.org/10.3390/foods8020084

    Article  CAS  Google Scholar 

  40. A. Wojdyło, A. Figiel, P. Legua, K. Lech, Á.A. Carbonell-Barrachina, F. Hernández, Food Chem. 207, 170 (2016). https://doi.org/10.1016/j.foodchem.2016.03.099

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (32160581) and Guangxi Natural Science Foundation (2020GXNSFAA259012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Duan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Duan, Z. & Wang, C. Effects of microwave drying on color change, phenolic substance content and phenolase activity of different parts of persimmon slices. Food Measure 18, 357–369 (2024). https://doi.org/10.1007/s11694-023-02162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02162-6

Keywords

Navigation