Skip to main content
Log in

Quality and sensory attributes of composite herbal tea from Parquetina Nigrescens (Parquetina) and Cymbopogon Citratus (Lemongrass)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Herbal teas are functional foods that interest consumers as they contain bioactive compounds known to promote health. As such, five different formulations of Parquetina and Lemongrass (100:0%, 87.5:12.5%, 75:25%, 62.5:37.5% and 50:50%) were used for the development of composite herbal teas which were evaluated for their phytochemical and mineral compositions, antioxidant capacities, microbiological quality and sensory attributes. The phytochemicals present in the composite herbal teas included phenols that ranged from 0.36 to 0.90 mgGAE/100ml, flavonoids (0.25 to 0.58 mgQE/100ml), alkaloids (0.12 to 0.79 mg/100 ml), saponins (0.04 to 0.14 mg/100ml), cardiac glycosides (0.01 to 0.1 mgDT/100ml), tannins (0.03 to 0.05 mgTAE/100ml) and terpenoids (0.04 to 0.25 mg/100ml). Potassium was the mineral with the highest concentration and it ranged from 15.06 to 21.19 mg/100ml in the tea samples. The composite herbal teas showed antioxidant capacities that ranged from 17.77 to 40.96%. The total bacterial count of the composite herbal tea ranged from 8.05 × 104 to 8.95 × 104 cfu/g, total fungal count (2.55 × 104 to 3.05 × 104 cfu/g) and total coliform count (5.50 × 102 to 7.5 × 102 cfu/g). Sensory evaluation showed that the most preferred sample was P50L50 (50% parquetina and 50% lemongrass). Conclusively, parquetina and lemongrass could be utilized in the production of a composite herbal tea with good quality and sensory attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Nicoletti, J. Int Food Sci Nutr. (2012). https://doi.org/10.3109/09637486.2011.628012

  2. C. Ravikumar, J. Pharm. Sci. Res. 6, 236–238 (2014)

    Google Scholar 

  3. S. Oguntola, Scientists validate herbal cure for diarrhoea. (Nigerian Tribune 2019), Retrieved from https://tribuneonlineng.com/scientists-validate-herbal-cure-fordiarrhoea/amp/ Accessed June 2022

  4. O.I. Akinyemi, E.O. Dada, ARPN: J. Agric. Biol. Sci. 8, 732–739 (2014)

    Google Scholar 

  5. B.V. Owoyele, A.B. Nafiu, I.A. Oyewole, L.A. Oyewole, A.O. Soladoye, J. Ethnopharmacol. 122, 86–90 (2008)

    Article  PubMed  Google Scholar 

  6. N.A. Imaga, G.O. Gbenle, V.I. Okochi, S. Adenekan, Sci. Res. Essays 5, 2201–2205 (2010)

    Google Scholar 

  7. O.L. Olayinka, E.A.G. Khalil, S.A. Atunwa, A.A. Abdullahi, M.K. Salawu, K.A.T. Ogunwale et al., Afr. J. Pharm. Pharmacol. (2018). https://doi.org/10.5897/AJPP2017.4879

    Article  Google Scholar 

  8. N.E.A. De-Heer, Formulation and sensory evaluation of herb tea from Moringa oleifera, Hibiscus sabdariffa and Cymbopogon citratus. (DATAD-R 2011). Retrieved from http://hdl.handle.net/123456789/2249. Accessed 17 April 2021

  9. G. Shah, R. Shri, V. Panchal, N. Sharma, B. Singh, A.S. Mann, J. Adv. Pharm. Technol. Res. (2011). https://doi.org/10.4103/2231-4040.79796

    Article  PubMed  PubMed Central  Google Scholar 

  10. E. Majewska, M. Koz, E. Gruczy, D. Kowalska, K. Tarnowska. Pol. J Food Nutr Sci. (2019). https://doi.org/10.31883/pjfns/113152

    Article  Google Scholar 

  11. F. Malongane, L. Mcgaw, F.N. Mudau, J. Sci. Food Agric. (2017). https://doi.org/10.1002/jsfa.8472

    Article  PubMed  Google Scholar 

  12. V. Joshua, R. Kayode, M. Sanusi, A. Awoniyi, O. Abiodun, B. Kayode, Alq J. Med. App Sci. (2022). https://doi.org/10.5281/zenodo.6039672

    Article  Google Scholar 

  13. K.C. Yadav, A. Parajuli, B.B. Khatri, L.D. Shiwakoti, J. Food Qual. (2020). https://doi.org/10.1155/2020/8874271

    Article  Google Scholar 

  14. K. Chew-Shio-Heong, N.H. Bhupinder, A.K. Alias, F. Ariffin, Am. J. Food Technol. (2011). https://doi.org/10.3923/ajft.2011.581.593

    Article  Google Scholar 

  15. B.E. Orimadegun, E.B. Bolajoko, A.A. Onyeaghala, O.O. Ademola-Aremu, J. Med. Plant. Res. (2018). https://doi.org/10.5897/JMPR2018.6578

    Article  Google Scholar 

  16. Z. Tofighi, G.N. Saeidi, A. Hadjiakhoondi, N. Yassa, Res. J. Pharmacog 3, 25–31 (2016)

    CAS  Google Scholar 

  17. A.B.M. Uddin, R.S. Khalid, M. Alaama, A.M. Abdulkader, A. Kasmuri, S.A. Abbas, J. Anal. Sci. Technol. (2016). https://doi.org/10.1186/s40543-016-0085-6

    Article  Google Scholar 

  18. T. Moodley, E.O. Amonsou, S. Kumar, J. Food Sci. Technol. (2015). https://doi.org/10.1007/s13197-015-1870-8

    Article  Google Scholar 

  19. F. Carraturo, O. Castro, J. Troisi, A. Luca, A. Masucci, P. Cennamo et al., BMC Microbiol. (2018). https://doi.org/10.1186/s12866-017-1142-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. ISO. International Standards Organization. (2011). Green Tea - Definition and Basic Requirement. 11287

  21. M. Adnan, A. Ahmad, A. Ahmed, N. Khalid, I. Hayath, I. Ahmed, Pak J. Bot. 45, 901–907 (2013)

    Google Scholar 

  22. S. Akyuz, A. Yarat, OHDMBSC. 9, 75–78 (2010)

    Google Scholar 

  23. L.B.F. Lunkes, L.N. Hashizume, Rev. Gaucha Odontol. (2014). https://doi.org/10.1590/1981-8637201400010000092623

    Article  Google Scholar 

  24. D. Wu, D.W. Sun, Trends Food Sci Tech. (2013). https://doi.org/10.1016/j.tifs.2012.08.004

    Article  Google Scholar 

  25. V.S.P. Chaturvedula, I. Prakash, J. Med. Plant. Res. (2011). https://doi.org/10.5897/JMPR.9001187

    Article  Google Scholar 

  26. N. Pathaw, K.S. Devi, R. Sapam, J. Sanasam, S. Monteshori, S. Phurailatpam, H.C. Devi, W.T. Chanu, B. Wangkhem, N.L. Mangang, Front. Nutr. (2022). https://doi.org/10.3389/fnut.2022.988964

    Article  PubMed  PubMed Central  Google Scholar 

  27. J. Ndife, N.C. Uka, N.A. Ukom, Food Res. (2019). https://doi.org/10.26656/fr.2017.3(5).040

  28. C. Egbuna, J.C. Ifemeje, Int. Org. Scientific Res. - J. Pharm. Biol. Sci. (2015). https://doi.org/10.9790/3008-10231019

    Article  Google Scholar 

  29. M. Marrelli, F. Conforti, F. Araniti, G.A. Statti, Molecules. (2016). https://doi.org/10.3390/molecules21101404

    Article  PubMed  PubMed Central  Google Scholar 

  30. A.B. Yusuf, A.A. Turaki, A.A. Adetunji, Haya: Saudi J Life Sci. (2022). https://doi.org/10.36348/sjls.2022.v07i05.002

  31. A.P. Ambrosy, J. Butler, A. Ahmed, M. Vaduganathan, D.J. Van-Veldhuisen, W.S. Colucci et al., J. Am. Coll. Cardiol. (2014). https://doi.org/10.1016/j.jacc.2014.01.051

    Article  PubMed  Google Scholar 

  32. NIDDKD, Cardiac glycosides. (LiverTox - NCBI Bookshelf, 2012), www.ncbi.nlm.nih.gov/books/NBK548418/#!po=96.6667. Accessed on 12 April 2021

  33. D. Ghosh, Int. J. Pharm. Sci. Rev. Res. 4, 40-44 (2015)

  34. Y. Zhu, C.Y. Shao, H.P. Lv, Y. Zhang, W.D. Dai, L. Guo et al., J. Chromatogr. A. (2017). https://doi.org/10.3864/j.issn.0578-1752.2017.06.012

    Article  PubMed  Google Scholar 

  35. B.H. Paschoalinotto, M.I. Dias, J. Pinela, T.C.S.P. Pires, M.J. Alves, A. Mocan, R.C. Calehlha, L. Barros, R.P. Ineu, I.C.F.R. Ferreira, Foods. (2021). https://doi.org/10.3390/foods10020475

  36. J.O. Odukoya, J.O. Odukoya, A.A. Oshodi, Eur. J. Pure Appl. Chem. 5, 18–31 (2018)

    Google Scholar 

  37. S.S. Ranade, P. Thiagarajan, Int. J. Pharm. Sci. Rev. Res. 35, 162–167 (2015)

    CAS  Google Scholar 

  38. W. Samolinska, B. Kiczorowska, M. Kwiecien, E. Rusinek-Prystupa, Biol. Trace Elem. Res. (2017). https://doi.org/10.1007/s12011-016-0790-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Y. Lavrinenko, A. Plieva, I. Zinicovscaia, G. Hristozova, M. Frontasyeva, K. Tkachenko, D. Dogadkin, I. Gromyak, V. Kolotov, Agriculture. (2021). https://doi.org/10.3390/agriculture11090841

  40. K.O. Soetan, C.O. Olaiya, O.E. Oyewole, Afr. J. Food Sci. 4, 200–222 (2010)

    CAS  Google Scholar 

  41. A.V. Badarinath, K.M. Rao, C.M.S. Chetty, S. Ramakanth, T.V.S. Rajan, K. Gnanaprakash, Int. J. Pharmatechnol Res. 2, 1276–1285 (2010)

    CAS  Google Scholar 

  42. D.P.I. Jain, S.S. Pancholi, R. Patel, J. Adv. Pharm. Technol. Res. (2011). https://doi.org/10.4103/2231-4040.85538

    Article  PubMed  PubMed Central  Google Scholar 

  43. S. Mao, K. Wang, Y. Lei, S. Yao, W. Lu, W. Huang, Sci. Rep. (2017). https://doi.org/10.1038/srep46501

    Article  PubMed  PubMed Central  Google Scholar 

  44. A.O. Ayoola, O. Akinloye, O. Oguntibeju, A.A. Odetola, Afr. J. Biotechnol. (2011). https://doi.org/10.5897/AJB10.1622

    Article  Google Scholar 

  45. E. Milani, Saffron. (S. Woodhead Publishing, 2020), pp. 307–20. https://doi.org/10.1016/B978-0-12-818638-1.00019-8

  46. THIE. Tea and Herbal Infusions, Europe. THIE’s Recommended Microbiological Specification for Herbal Infusions (Dry). 8, 1–7 (2018)

  47. Y. Jiang, N.N. Gong, H. Matsunami, Chem. Senses. (2014). https://doi.org/10.1093/chemse/bju021

    Article  PubMed  PubMed Central  Google Scholar 

  48. M.K. Sharif, M.S. Butt, H.R. Sharif, M. Nasir, Handbook of Food Science and Technology (Faisalabad, Pakistan, 2017), pp. 362–386

    Google Scholar 

  49. C.S. Dzah, J. Food Nutr Sci. (2015). https://doi.org/10.11648/j.jfns.20150303.19

  50. P. Mabai, A. Omolola, A.I.O. Jideani, J. Food Res. (2018). https://doi.org/10.5539/jfr.v7n2p68

    Article  Google Scholar 

Download references

Funding

The authors did not receive any funds, grants or other supports for the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Victoria Auhoiza Joshua, Rowland Monday-Ojo Kayode and Mayowa Saheed Sanusi.

Methodology: Victoria Auhoiza Joshua, Rowland Monday-Ojo Kayode and Mayowa Saheed Sanusi.

Formal analysis and investigations: Victoria Auhoiza Joshua, Olufunmilola Adunni Abiodun, Stephen Orobola Olabanji and Ojochenemi Rebecca Egwumah.

Writing – original draft: Victoria Auhoiza Joshua, Rowland Monday-Ojo Kayode and Olufunmilola Adunni Abiodun.

Writing – review and editing: Bukola Idowu Kayode, Ojochenemi Rebecca Egwumah and Stephen Orobola Olabanji.

Data analysis: Victoria Auhoiza Joshua and Bukola Idowu Kayode.

Supervision: Victoria Auhoiza Joshua, Rowland Monday-Ojo Kayode and Mayowa Saheed Sanusi.

Corresponding author

Correspondence to Rowland Monday-Ojo Kayode.

Ethics declarations

Ethical approval and informed consent

Ethical approval was obtained from the University of Ilorin Ethical Review Committee and the reference number UERC/ASN/2021/2041 was issued.

Competing interests

The authors declare that they have no financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshua, V.A., Sanusi, M.S., Abiodun, O.A. et al. Quality and sensory attributes of composite herbal tea from Parquetina Nigrescens (Parquetina) and Cymbopogon Citratus (Lemongrass). Food Measure 17, 2730–2740 (2023). https://doi.org/10.1007/s11694-023-01830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01830-x

Keywords

Navigation